Ballistisches Pendel
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Um die Geschwindigkeit eines Geschosses der Masse m_mathrmg zu bestimmen wird dieses in eine Pel der Masse m_mathrmkg under Pellänge lmathrmm geschossen. Dadurch wird das Pel um den Winkel alpha^circ ausgelenkt. Welche Geschwindigkeit v hat das Geschoss? figureH centering tikzpicturescale. defdx. defdy. draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw decorationbracemirror decorate ..-- noderightxshift.cm lmathrmm .; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure
Solution:
Energieerhaltung Pel nach dem Stoss: m_+m_ g hfracm_+m_ v_P^quadRightarrowquad v_Psqrtgh Impulserhaltung vor und nach dem Stoss: m_ v_m_+m_ v_PquadRightarrowquad v_fracm_+m_m_sqrtgh h muss aus der Geometrie bestimmt werden: figureH centering tikzpicturescale. defdx. defdy. fill colorred! -dx.+dy--.+dy---- -dx.+dy; draw colorred . arc ::. node at .. alpha; draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- node right l ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw colorgray .-dx.+dy circle . node below S; draw decorationbracemirror decorate ..+dy-- noderightxshift.cm l-h .; draw decorationbracemirror decorate ..-- noderightxshift.cm h ..+dy; draw dashed .-dx.+dy--..+dy; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure Im roten Dreieck kennen wir l und alpha. Damit erhalten wir: cosalphafracl-hlquadRightarrowquad hl-cosalpha.mathrmm Daraus ergibt sich: v_mathbf.m/s
Um die Geschwindigkeit eines Geschosses der Masse m_mathrmg zu bestimmen wird dieses in eine Pel der Masse m_mathrmkg under Pellänge lmathrmm geschossen. Dadurch wird das Pel um den Winkel alpha^circ ausgelenkt. Welche Geschwindigkeit v hat das Geschoss? figureH centering tikzpicturescale. defdx. defdy. draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw decorationbracemirror decorate ..-- noderightxshift.cm lmathrmm .; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure
Solution:
Energieerhaltung Pel nach dem Stoss: m_+m_ g hfracm_+m_ v_P^quadRightarrowquad v_Psqrtgh Impulserhaltung vor und nach dem Stoss: m_ v_m_+m_ v_PquadRightarrowquad v_fracm_+m_m_sqrtgh h muss aus der Geometrie bestimmt werden: figureH centering tikzpicturescale. defdx. defdy. fill colorred! -dx.+dy--.+dy---- -dx.+dy; draw colorred . arc ::. node at .. alpha; draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- node right l ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw colorgray .-dx.+dy circle . node below S; draw decorationbracemirror decorate ..+dy-- noderightxshift.cm l-h .; draw decorationbracemirror decorate ..-- noderightxshift.cm h ..+dy; draw dashed .-dx.+dy--..+dy; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure Im roten Dreieck kennen wir l und alpha. Damit erhalten wir: cosalphafracl-hlquadRightarrowquad hl-cosalpha.mathrmm Daraus ergibt sich: v_mathbf.m/s
Meta Information
Exercise:
Um die Geschwindigkeit eines Geschosses der Masse m_mathrmg zu bestimmen wird dieses in eine Pel der Masse m_mathrmkg under Pellänge lmathrmm geschossen. Dadurch wird das Pel um den Winkel alpha^circ ausgelenkt. Welche Geschwindigkeit v hat das Geschoss? figureH centering tikzpicturescale. defdx. defdy. draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw decorationbracemirror decorate ..-- noderightxshift.cm lmathrmm .; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure
Solution:
Energieerhaltung Pel nach dem Stoss: m_+m_ g hfracm_+m_ v_P^quadRightarrowquad v_Psqrtgh Impulserhaltung vor und nach dem Stoss: m_ v_m_+m_ v_PquadRightarrowquad v_fracm_+m_m_sqrtgh h muss aus der Geometrie bestimmt werden: figureH centering tikzpicturescale. defdx. defdy. fill colorred! -dx.+dy--.+dy---- -dx.+dy; draw colorred . arc ::. node at .. alpha; draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- node right l ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw colorgray .-dx.+dy circle . node below S; draw decorationbracemirror decorate ..+dy-- noderightxshift.cm l-h .; draw decorationbracemirror decorate ..-- noderightxshift.cm h ..+dy; draw dashed .-dx.+dy--..+dy; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure Im roten Dreieck kennen wir l und alpha. Damit erhalten wir: cosalphafracl-hlquadRightarrowquad hl-cosalpha.mathrmm Daraus ergibt sich: v_mathbf.m/s
Um die Geschwindigkeit eines Geschosses der Masse m_mathrmg zu bestimmen wird dieses in eine Pel der Masse m_mathrmkg under Pellänge lmathrmm geschossen. Dadurch wird das Pel um den Winkel alpha^circ ausgelenkt. Welche Geschwindigkeit v hat das Geschoss? figureH centering tikzpicturescale. defdx. defdy. draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw decorationbracemirror decorate ..-- noderightxshift.cm lmathrmm .; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure
Solution:
Energieerhaltung Pel nach dem Stoss: m_+m_ g hfracm_+m_ v_P^quadRightarrowquad v_Psqrtgh Impulserhaltung vor und nach dem Stoss: m_ v_m_+m_ v_PquadRightarrowquad v_fracm_+m_m_sqrtgh h muss aus der Geometrie bestimmt werden: figureH centering tikzpicturescale. defdx. defdy. fill colorred! -dx.+dy--.+dy---- -dx.+dy; draw colorred . arc ::. node at .. alpha; draw thick rectangle ..; draw dashed -dx+dy rectangle .-dx.+dy; draw thick .. -- .; draw thick . -- ; draw dashed .-dx.+dy -- .; draw dashed -dx.+dy -- node right l ; draw .. arc ::. node at .. alpha; draw -latex very thick . -- node above vecv .; draw dashed ..--..; draw .. circle . node below S; draw colorgray .-dx.+dy circle . node below S; draw decorationbracemirror decorate ..+dy-- noderightxshift.cm l-h .; draw decorationbracemirror decorate ..-- noderightxshift.cm h ..+dy; draw dashed .-dx.+dy--..+dy; fill patternnorth east lines -. rectangle .; draw thick -. -- ; tikzpicture figure Im roten Dreieck kennen wir l und alpha. Damit erhalten wir: cosalphafracl-hlquadRightarrowquad hl-cosalpha.mathrmm Daraus ergibt sich: v_mathbf.m/s
Contained in these collections:

