Schiefes Gleiter
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/rbJpXjt7DZk
But there is a video to a similar exercise:
Exercise:
Der Körper auf der schiefen Ebene gleitet in t second die Strecke s .meter beschleunigt runter. Wie gross ist der Gleitreibungskoeffizienten falls folges System gilt vgl Abbildung? center tikzpicturescale. %% Konstanten % Boden defBodAxdefBodAy defBodExdefBodEy defBodDelta. % Ebene defEbeAxdefEbeAy defEbeExdefEbeEy defEbeDelta. % Winkel defRot defWnamegrad % Wagen/Quader kein Wagen: Wert defWagL % Wagen mit Räder Werte ungleich defRadR % Kugel keine Kugel: Wert defKugR % Code defWagHWagL/ defWxBodAx+/Rot*defWyBodAy+. % Zeichnen draw very thick BodAxBodAy -- BodExBodEy; fill gray! BodAxBodAy rectangle BodExBodEy-BodDelta; draw very thickrotate aroundRot:BodAxBodAy BodAxBodAy -- BodExBodEy; fill gray!rotate aroundRot:BodAxBodAy BodAx+.BodAy rectangle BodExBodEy-EbeDelta; draw thickfillwhite BodAxBodAy -- Wx+BodAy arc :Rot:Wx+ -- BodAxBodAy; node at WxWy Wname; draw thick fillgray!rotate aroundRot:BodAxBodAy BodExBodEy+*RadR rectangle noderotate aroundRot:BodAxBodAy m BodEx-WagLBodEy+WagH+*RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR/; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR/; shadedraw shadingballrotate aroundRot:BodAxBodAy BodEx-KugRBodEy+KugR circle KugR; draw line widthptrotate aroundRot:BodAxBodAy EbeExEbeEy -- EbeEx+EbeEy; draw rotate aroundRot:BodAxBodAy EbeEx EbeEy+/ -- EbeEx+. EbeEy+/; draw EbeEx+. EbeEy+. -- EbeEx+. EbeEy+; draw thick fillgray! EbeEx-. EbeEy+ rectangle node m/EbeEx+. EbeEy+ ; draw fillgray!rotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; draw fillblackrotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; tikzpicture center
Solution:
Die Bewegungsgleichungen für die Masse links A und rechts B lauten: F_Res^A fracma qquad F_Res^B ma. Daraus erhalten wir: eqnarray* A:&F_S - F_G fracma B.y:&F_N F_G cosalpha B.x:&F_Gsinalpha - F_S - F_R ma eqnarray* Setzen wir die ersten zwei Gl. in die dritte ein erhalten wir: F_Gsinalpha - F_G^A - fracma - mu_G F_G cosalpha ma. Nach mu aufgelöst erhalten wir: mu_G fracsinalpha - frac-fraca/gcosalpha. Mit s fracat^ erhalten wir: mu_G approx ..
Der Körper auf der schiefen Ebene gleitet in t second die Strecke s .meter beschleunigt runter. Wie gross ist der Gleitreibungskoeffizienten falls folges System gilt vgl Abbildung? center tikzpicturescale. %% Konstanten % Boden defBodAxdefBodAy defBodExdefBodEy defBodDelta. % Ebene defEbeAxdefEbeAy defEbeExdefEbeEy defEbeDelta. % Winkel defRot defWnamegrad % Wagen/Quader kein Wagen: Wert defWagL % Wagen mit Räder Werte ungleich defRadR % Kugel keine Kugel: Wert defKugR % Code defWagHWagL/ defWxBodAx+/Rot*defWyBodAy+. % Zeichnen draw very thick BodAxBodAy -- BodExBodEy; fill gray! BodAxBodAy rectangle BodExBodEy-BodDelta; draw very thickrotate aroundRot:BodAxBodAy BodAxBodAy -- BodExBodEy; fill gray!rotate aroundRot:BodAxBodAy BodAx+.BodAy rectangle BodExBodEy-EbeDelta; draw thickfillwhite BodAxBodAy -- Wx+BodAy arc :Rot:Wx+ -- BodAxBodAy; node at WxWy Wname; draw thick fillgray!rotate aroundRot:BodAxBodAy BodExBodEy+*RadR rectangle noderotate aroundRot:BodAxBodAy m BodEx-WagLBodEy+WagH+*RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR/; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR/; shadedraw shadingballrotate aroundRot:BodAxBodAy BodEx-KugRBodEy+KugR circle KugR; draw line widthptrotate aroundRot:BodAxBodAy EbeExEbeEy -- EbeEx+EbeEy; draw rotate aroundRot:BodAxBodAy EbeEx EbeEy+/ -- EbeEx+. EbeEy+/; draw EbeEx+. EbeEy+. -- EbeEx+. EbeEy+; draw thick fillgray! EbeEx-. EbeEy+ rectangle node m/EbeEx+. EbeEy+ ; draw fillgray!rotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; draw fillblackrotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; tikzpicture center
Solution:
Die Bewegungsgleichungen für die Masse links A und rechts B lauten: F_Res^A fracma qquad F_Res^B ma. Daraus erhalten wir: eqnarray* A:&F_S - F_G fracma B.y:&F_N F_G cosalpha B.x:&F_Gsinalpha - F_S - F_R ma eqnarray* Setzen wir die ersten zwei Gl. in die dritte ein erhalten wir: F_Gsinalpha - F_G^A - fracma - mu_G F_G cosalpha ma. Nach mu aufgelöst erhalten wir: mu_G fracsinalpha - frac-fraca/gcosalpha. Mit s fracat^ erhalten wir: mu_G approx ..
Meta Information
Exercise:
Der Körper auf der schiefen Ebene gleitet in t second die Strecke s .meter beschleunigt runter. Wie gross ist der Gleitreibungskoeffizienten falls folges System gilt vgl Abbildung? center tikzpicturescale. %% Konstanten % Boden defBodAxdefBodAy defBodExdefBodEy defBodDelta. % Ebene defEbeAxdefEbeAy defEbeExdefEbeEy defEbeDelta. % Winkel defRot defWnamegrad % Wagen/Quader kein Wagen: Wert defWagL % Wagen mit Räder Werte ungleich defRadR % Kugel keine Kugel: Wert defKugR % Code defWagHWagL/ defWxBodAx+/Rot*defWyBodAy+. % Zeichnen draw very thick BodAxBodAy -- BodExBodEy; fill gray! BodAxBodAy rectangle BodExBodEy-BodDelta; draw very thickrotate aroundRot:BodAxBodAy BodAxBodAy -- BodExBodEy; fill gray!rotate aroundRot:BodAxBodAy BodAx+.BodAy rectangle BodExBodEy-EbeDelta; draw thickfillwhite BodAxBodAy -- Wx+BodAy arc :Rot:Wx+ -- BodAxBodAy; node at WxWy Wname; draw thick fillgray!rotate aroundRot:BodAxBodAy BodExBodEy+*RadR rectangle noderotate aroundRot:BodAxBodAy m BodEx-WagLBodEy+WagH+*RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR/; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR/; shadedraw shadingballrotate aroundRot:BodAxBodAy BodEx-KugRBodEy+KugR circle KugR; draw line widthptrotate aroundRot:BodAxBodAy EbeExEbeEy -- EbeEx+EbeEy; draw rotate aroundRot:BodAxBodAy EbeEx EbeEy+/ -- EbeEx+. EbeEy+/; draw EbeEx+. EbeEy+. -- EbeEx+. EbeEy+; draw thick fillgray! EbeEx-. EbeEy+ rectangle node m/EbeEx+. EbeEy+ ; draw fillgray!rotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; draw fillblackrotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; tikzpicture center
Solution:
Die Bewegungsgleichungen für die Masse links A und rechts B lauten: F_Res^A fracma qquad F_Res^B ma. Daraus erhalten wir: eqnarray* A:&F_S - F_G fracma B.y:&F_N F_G cosalpha B.x:&F_Gsinalpha - F_S - F_R ma eqnarray* Setzen wir die ersten zwei Gl. in die dritte ein erhalten wir: F_Gsinalpha - F_G^A - fracma - mu_G F_G cosalpha ma. Nach mu aufgelöst erhalten wir: mu_G fracsinalpha - frac-fraca/gcosalpha. Mit s fracat^ erhalten wir: mu_G approx ..
Der Körper auf der schiefen Ebene gleitet in t second die Strecke s .meter beschleunigt runter. Wie gross ist der Gleitreibungskoeffizienten falls folges System gilt vgl Abbildung? center tikzpicturescale. %% Konstanten % Boden defBodAxdefBodAy defBodExdefBodEy defBodDelta. % Ebene defEbeAxdefEbeAy defEbeExdefEbeEy defEbeDelta. % Winkel defRot defWnamegrad % Wagen/Quader kein Wagen: Wert defWagL % Wagen mit Räder Werte ungleich defRadR % Kugel keine Kugel: Wert defKugR % Code defWagHWagL/ defWxBodAx+/Rot*defWyBodAy+. % Zeichnen draw very thick BodAxBodAy -- BodExBodEy; fill gray! BodAxBodAy rectangle BodExBodEy-BodDelta; draw very thickrotate aroundRot:BodAxBodAy BodAxBodAy -- BodExBodEy; fill gray!rotate aroundRot:BodAxBodAy BodAx+.BodAy rectangle BodExBodEy-EbeDelta; draw thickfillwhite BodAxBodAy -- Wx+BodAy arc :Rot:Wx+ -- BodAxBodAy; node at WxWy Wname; draw thick fillgray!rotate aroundRot:BodAxBodAy BodExBodEy+*RadR rectangle noderotate aroundRot:BodAxBodAy m BodEx-WagLBodEy+WagH+*RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR; draw thick rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-RadRBodEy+RadR circle RadR/; draw thick fillblack rotate aroundRot:BodAxBodAy BodEx-WagL+RadRBodEy+RadR circle RadR/; shadedraw shadingballrotate aroundRot:BodAxBodAy BodEx-KugRBodEy+KugR circle KugR; draw line widthptrotate aroundRot:BodAxBodAy EbeExEbeEy -- EbeEx+EbeEy; draw rotate aroundRot:BodAxBodAy EbeEx EbeEy+/ -- EbeEx+. EbeEy+/; draw EbeEx+. EbeEy+. -- EbeEx+. EbeEy+; draw thick fillgray! EbeEx-. EbeEy+ rectangle node m/EbeEx+. EbeEy+ ; draw fillgray!rotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; draw fillblackrotate aroundRot:BodAxBodAy EbeEx+.EbeEy circle .cm; tikzpicture center
Solution:
Die Bewegungsgleichungen für die Masse links A und rechts B lauten: F_Res^A fracma qquad F_Res^B ma. Daraus erhalten wir: eqnarray* A:&F_S - F_G fracma B.y:&F_N F_G cosalpha B.x:&F_Gsinalpha - F_S - F_R ma eqnarray* Setzen wir die ersten zwei Gl. in die dritte ein erhalten wir: F_Gsinalpha - F_G^A - fracma - mu_G F_G cosalpha ma. Nach mu aufgelöst erhalten wir: mu_G fracsinalpha - frac-fraca/gcosalpha. Mit s fracat^ erhalten wir: mu_G approx ..
Contained in these collections:
-
Masse auf schiefer Ebene by TeXercises