Meta Information  Exercise contained in  Rate this Exercise  



0 
A sort of projectile launcher is built in the following way: A large current moves in a closed loop composed of fixed rails, a power supply and a very light, almost frictionless bar touching the rails. A magnetic field is perpendicular to the plane of the circuit. If the bar has length $\SI{18}{cm}$, a mass of $\SI{1.3}{g}$, and is placed in a field of $\SI{1.7}{T}$, what constant current flow is needed, to accelerate the bar from rest to $\SI{27}{\meter\per\second}$ in a distance of $\SI{1.2}{m}$? In what direction must the magnetic field point?
The acceleration needed, to reach the given velocity in the given distance, is: \begin{align} a &= \frac{v^2}{2s}\\ &= \SI{303.75}{\meter\per\second\squared} \end{align} The force required to accelerate an object with the given mass to the above calculated value, is: \begin{align} F&= ma \\ &= \SI{0.395}{N} \end{align} Hence, the current in the wire must be: \begin{align} I &=\frac{F}{B\ell}\\ &=\SI{1.29}{A} \end{align}
23:16, 24. May 2017  si  Urs Zellweger (urs)  Current Version 