Exercise
https://texercises.com/exercise/abstand-von-punkt-zu-gerade
Question
Solution
Short
Video
No explanation / solution video for this exercise has yet been created.

Visit our YouTube-Channel to see solutions for other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Report An Error
You are on texercises.com.
reCaptcha will only work on our main-domain \(\TeX\)ercises.com!
Meta Information
\(\LaTeX\)-Code
Exercise:
Welchen Abstand hat der Punkt PPx|Py|Pz zu der Geraden g: pmatrix x y z pmatrix pmatrix gx gy gz pmatrix + t pmatrix tx ty tz pmatrix?

Solution:
tikzset glow/.style preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. preaction# draw line joinround line width.pt opacity. bf . Berechnungsmethode tdplotsetmaincoords center tikzpicture>latex scale. tdplot_main_coords tikzsetscaled unit vectors. foreach x in -... drawcolorgray scaled cs x---x; foreach y in -... drawcolorgray scaled cs -y--y; drawcolorgreen!!black-> scaled cs ---. noderight small bmx; drawcolorgreen!!black-> scaled cs ---. nodeabove small bmy; drawcolorgreen!!black-> scaled cs --- nodeleft small bmz; drawdotted scaled cs LxX LyX LzX--LxX LyX ; drawdotted scaled cs PxX PyX PzX--PxX PyX ; drawdotted scaled cs gxX gyX gzX--gxX gyX ; drawcolorblue scaled cs gxXgyXgzX--+-*txX-*tyX-*tzX nodeleftsmallg; drawcolorblue scaled cs gxXgyXgzX--+*txX*tyX*tzX; draw-> >stealth colorred thick scaled cs gxXgyXgzX--+txXtyXtzX nodeleft tiny pmatrix tx ty tzpmatrix vec v; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillblue!!white coordinatesgxXgyXgzX noderight tiny Dgx|gy|gz; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillviolet!!white coordinatesLxXLyXLzX nodeleftred!!blue tiny L; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillred!!yellow coordinatesPxXPyXPzX noderight red!!yellow tiny PPx|Py|Pz; draw-> >stealth colorred!!yellow thick dashed scaled cs --+PxXPyXPzX nodemidway above tiny vec r_P; draw-> >stealth colorred!!blue thick dashed scaled cs --+LxXLyXLzX nodemidway left tiny vec r_L; draw-> >stealth colorolive thick scaled cs PxXPyXPzX--LxX LyX LzX nodemidway above tiny vec d; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesLxXLyX; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesgxXgyX; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesPxXPyX; tikzpicture center Um den Abstand zu berechnen muss als erstes der Lotfusspunkt L auf der Geraden g gefunden werden. Weil der Vektor vecPL rechtwinklig zum Vektor vec v in Richtung der Geraden sein muss deren Skalarprodukt also verschwinden muss gilt: leftvec L - vec Pright vec v &mustbe leftpmatrix L_x L_y L_zpmatrix - pmatrix Px Py Pz pmatrix right pmatrix tx ty tz pmatrix &mustbe Der Punkt L ist unbekannt aber liegt auf der Geraden weshalb man schreiben kann: leftpmatrix gx - t tx gy - t ty gz - t tzpmatrix - pmatrix Px Py Pz pmatrix right pmatrix tx ty tz pmatrix &mustbe pmatrix - t tx - - t ty - - t tzpmatrix pmatrix tx ty tz pmatrix &mustbe Skalarprodukt ausrechnen und auflösen nach t liefert: t . Damit findet man den Lotfusspunkt: pmatrix L_x L_y L_zpmatrix pmatrix gx gy gz pmatrix + . pmatrix tx ty tz pmatrix pmatrix Lx Ly Lz pmatrix Der Abstand zwischen den Punkten L und P kann nun leicht berechnet werden: vec d vec r_L - vec r_P pmatrix x_L y_L z_L pmatrix - pmatrix x_P y_P z_P pmatrix pmatrix LxX LyX LzX pmatrix - pmatrix PxX PyX PzX pmatrix pmatrix AX BX CX pmatrix |vec d| sqrtx_L-x_P^+y_L-y_P^+z_L-z_P^ sqrtLxX-PxX^+LyX-PyX^+LzX-PzX^ sqrtAX^+BX^+CX^ G bf . Berechnungsmethode tdplotsetmaincoords center tikzpicture>latex scale. tdplot_main_coords tikzsetscaled unit vectors. foreach x in -... drawcolorgray scaled cs x---x; foreach y in -... drawcolorgray scaled cs -y--y; drawcolorgreen!!black-> scaled cs ---. noderight small bmx; drawcolorgreen!!black-> scaled cs ---. nodeabove small bmy; drawcolorgreen!!black-> scaled cs --- nodeleft small bmz; drawdotted scaled cs PxX PyX PzX--PxX PyX ; drawdotted scaled cs gxX gyX gzX--gxX gyX ; drawcolorblue scaled cs gxXgyXgzX--+-*txX-*tyX-*tzX nodeleftsmallg; drawcolorblue scaled cs gxXgyXgzX--+*txX*tyX*tzX; draw-> >stealth colorred thick scaled cs gxXgyXgzX--+txXtyXtzX nodemidwayleft tiny vec v; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillblue!!white coordinatesgxX+txXgyX+tyXgzX+tzX nodeleft tiny BBxX|ByX|BzX; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillblue!!white coordinatesgxXgyXgzX noderight tiny Agx|gy|gz; draw-> >stealth colorred!!white dashed thick scaled cs glowred PxXPyXPzX--+txXtyXtzX nodemidway right tiny vec v; draw-> >stealth colororange!!white dashed thick scaled cs glowyellow gxXgyXgzX--PxXPyXPzX nodemidway below tiny vec AP; draw-> >stealth colorred!!white dashed thick scaled cs glowyellow BxXByXBzX--+sxXsyXszX; filldrawcolorblack fillyellow!!white opacity. scaled csgxXgyXgzX--BxXByXBzX--QxXQyXQzX--PxXPyXPzX--cycle; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillred!!yellow coordinatesPxXPyXPzX noderight red!!yellow tiny PPx|Py|Pz; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillblack coordinatesQxXQyXQzX noderight tiny QQxX|QyX|QzX; draw-> >stealth colorolive thick scaled cs PxXPyXPzX--LxX LyX LzX nodemidway above tiny vec d; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesLxXLyX; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesgxXgyX; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesPxXPyX; tikzpicture center Die Fläche des von AB und P aufgespannten Parallelogramms lässt sich darstellen als: F_APQB overlineAB |vec d| Diese Gleichung kann man mithilfe des Kreuzprodukts umformulieren in: F_APQB |vecABtimes vecAP| |vec d| d fracF_APQBoverlineAB d frac|vecABtimes vecAP|overlineAB In diese Formel können nun die konkreten Werte der Aufgabe eingesetzt werden: d fracleft|pmatrix bxX byX bzX pmatrix times pmatrix pxX pyX pzX pmatrixright| overlinepmatrix bxX byX bzX pmatrix fracleft|pmatrix kxX kyX kzX pmatrixright|overlinepmatrix bxX byX bzX pmatrix fracDE F bf . Berechnungsmethode tdplotsetmaincoords center tikzpicture>latex scale. tdplot_main_coords tikzsetscaled unit vectors. foreach x in -... drawcolorgray scaled cs x---x; foreach y in -... drawcolorgray scaled cs -y--y; drawcolorgreen!!black-> scaled cs ---. noderight small bmx; drawcolorgreen!!black-> scaled cs ---. nodeabove small bmy; drawcolorgreen!!black-> scaled cs --- nodeleft small bmz; drawdotted scaled cs LxX LyX LzX--LxX LyX ; drawdotted scaled cs PxX PyX PzX--PxX PyX ; drawdotted scaled cs gxX gyX gzX--gxX gyX ; drawcolorblue scaled cs gxXgyXgzX--+-*txX-*tyX-*tzX nodeleftsmallg; drawcolorblue scaled cs gxXgyXgzX--+*txX*tyX*tzX; drawcoloryellow!!red very thick scaled cs glowyellow --.. nodebelowsmallmathcalE; draw-> >stealth colorred thick scaled cs gxXgyXgzX--+txXtyXtzX nodeleft tiny pmatrix tx ty tzpmatrix vec v; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillblue!!white coordinatesgxXgyXgzX noderight tiny Dgx|gy|gz; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillviolet!!white coordinatesLxXLyXLzX nodeleftred!!blue tiny SLx|Ly|Lz; shadedrawscaled cs plot only marks mark* mark sizept mark optionsfillred!!yellow coordinatesPxXPyXPzX noderight red!!yellow tiny PPx|Py|Pz; draw-> >stealth colorred!!yellow thick dashed scaled cs --+PxXPyXPzX nodemidway above tiny vec r_P; draw-> >stealth colorolive thick scaled cs PxXPyXPzX--LxX LyX LzX nodemidway above tiny vec d; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesLxXLyX; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesgxXgyX; shadedrawscaled cs plot only marks mark* mark size.pt mark optionsfillblack coordinatesPxXPyX; tikzpicture center Normalenvektor von g ablesen: vec n pmatrix tx ty tz pmatrix tx x + ty y + tz z + D P einsetzen und so D bestimmen: hxX+hyX+hzX + D Rightarrow D HX Daraus folgt dann die Ebenengleichung: tx x + tz z HX Normalebene durch P zu g schneiden mit g dafür werden zunächst die Komponentengleichungen von g aufgestellt: center x gx+tx t y gy+ty t z gz+tz t center Anschliess wird der Schnittpunkt S bestimmt: center tx gx+tx t + tz gz+tz t HX ixX+jxX t + izX+jzX t HX lX+mX t t nX Rightarrow S uxX|uyX|uzX center Vergleicht man diesen S mit dem Lotfusspunkt L aus der ersten Berechungsmethode fällt auf dass es sich bei den beiden um den gleichen Punkt handelt. Nun muss nur noch der Abstand zwischen P und S bestimmt werden: vec d vec r_S - vec r_P pmatrix x_S y_S z_S pmatrix - pmatrix x_P y_P z_P pmatrix pmatrix uxX uyX uzX pmatrix - pmatrix PxX PyX PzX pmatrix pmatrix AX BX CX pmatrix |vec d| sqrtx_S-x_P^+y_S-y_P^+z_S-z_P^ sqrtLxX-PxX^+LyX-PyX^+LzX-PzX^ sqrtAX^+BX^+CX^ G
Contained in these collections:

Attributes & Decorations
Tags abstand, gerade, mathematik, punkt, vektorgeometrie
Difficulty
(3, default)
Points 3 (default)
Language GER (Deutsch)
Type Calculative / Quantity
Creator uz
Decoration