Amerikanischer Penny
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
United States Mint, , 2006, digital photograph, United States Mint
<Wikpiedia> (retrieved on April 16, 2023)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein vor hergestellter amerikanischer Penny hat .g Masse. Welche Energie wäre notwig um sämtliche Neutronen und Protonen in einer solchen Münze voneinander zu trennen? Nimm der Einfachheit halber an der Penny bestehe ausschliesslich aus isotopeCu-Atomen mCuO Masse. Die Massen eines Protons und Neutrons sind ncmpu bzw. ncmnu diejenige eines Elektrons ncmeu.
Solution:
Der Massefekt bei der Herstellung eines isotopeCu-Isotopes aus Protonen und Neutronen und Elektronen beträgt: SolQtydmu*ncmpuX+ncmeuX+*ncmnuX-mCuXu SolQtydmkdmuX*ncunkg Delta m sscmp + sscmn + sscm sscmCu dmuQ dmk Um ein Kupfer--Isotop in seine Bestandteile zu zerlegen müssten ihm also SolQtyEedmkX*nccn^J SolQtyEeMEeX/e/ncenMeV E_ Delta m c^ dmk qtyncc^ Ee EeMQ zugeführt werden. Insgesamt hat es in der Münze SolQtynmCuX/MXmol SolQtyNnX*ncNAn n fracmM fracmCuM n N N Kupfer-Atome deren molare Masse Mg beträgt. Der Münze müssten also total SolQtyENX*EeXJ E N E_ N Ee E zugeführt werden um sie in ihre Bestandteile zu zerlegen. Ausrufbox Das ist mehr als der Gesamtenergieverbrauch der Weltbevölkerung in einem Jahr. Ausrufbox
Ein vor hergestellter amerikanischer Penny hat .g Masse. Welche Energie wäre notwig um sämtliche Neutronen und Protonen in einer solchen Münze voneinander zu trennen? Nimm der Einfachheit halber an der Penny bestehe ausschliesslich aus isotopeCu-Atomen mCuO Masse. Die Massen eines Protons und Neutrons sind ncmpu bzw. ncmnu diejenige eines Elektrons ncmeu.
Solution:
Der Massefekt bei der Herstellung eines isotopeCu-Isotopes aus Protonen und Neutronen und Elektronen beträgt: SolQtydmu*ncmpuX+ncmeuX+*ncmnuX-mCuXu SolQtydmkdmuX*ncunkg Delta m sscmp + sscmn + sscm sscmCu dmuQ dmk Um ein Kupfer--Isotop in seine Bestandteile zu zerlegen müssten ihm also SolQtyEedmkX*nccn^J SolQtyEeMEeX/e/ncenMeV E_ Delta m c^ dmk qtyncc^ Ee EeMQ zugeführt werden. Insgesamt hat es in der Münze SolQtynmCuX/MXmol SolQtyNnX*ncNAn n fracmM fracmCuM n N N Kupfer-Atome deren molare Masse Mg beträgt. Der Münze müssten also total SolQtyENX*EeXJ E N E_ N Ee E zugeführt werden um sie in ihre Bestandteile zu zerlegen. Ausrufbox Das ist mehr als der Gesamtenergieverbrauch der Weltbevölkerung in einem Jahr. Ausrufbox
Meta Information
Exercise:
Ein vor hergestellter amerikanischer Penny hat .g Masse. Welche Energie wäre notwig um sämtliche Neutronen und Protonen in einer solchen Münze voneinander zu trennen? Nimm der Einfachheit halber an der Penny bestehe ausschliesslich aus isotopeCu-Atomen mCuO Masse. Die Massen eines Protons und Neutrons sind ncmpu bzw. ncmnu diejenige eines Elektrons ncmeu.
Solution:
Der Massefekt bei der Herstellung eines isotopeCu-Isotopes aus Protonen und Neutronen und Elektronen beträgt: SolQtydmu*ncmpuX+ncmeuX+*ncmnuX-mCuXu SolQtydmkdmuX*ncunkg Delta m sscmp + sscmn + sscm sscmCu dmuQ dmk Um ein Kupfer--Isotop in seine Bestandteile zu zerlegen müssten ihm also SolQtyEedmkX*nccn^J SolQtyEeMEeX/e/ncenMeV E_ Delta m c^ dmk qtyncc^ Ee EeMQ zugeführt werden. Insgesamt hat es in der Münze SolQtynmCuX/MXmol SolQtyNnX*ncNAn n fracmM fracmCuM n N N Kupfer-Atome deren molare Masse Mg beträgt. Der Münze müssten also total SolQtyENX*EeXJ E N E_ N Ee E zugeführt werden um sie in ihre Bestandteile zu zerlegen. Ausrufbox Das ist mehr als der Gesamtenergieverbrauch der Weltbevölkerung in einem Jahr. Ausrufbox
Ein vor hergestellter amerikanischer Penny hat .g Masse. Welche Energie wäre notwig um sämtliche Neutronen und Protonen in einer solchen Münze voneinander zu trennen? Nimm der Einfachheit halber an der Penny bestehe ausschliesslich aus isotopeCu-Atomen mCuO Masse. Die Massen eines Protons und Neutrons sind ncmpu bzw. ncmnu diejenige eines Elektrons ncmeu.
Solution:
Der Massefekt bei der Herstellung eines isotopeCu-Isotopes aus Protonen und Neutronen und Elektronen beträgt: SolQtydmu*ncmpuX+ncmeuX+*ncmnuX-mCuXu SolQtydmkdmuX*ncunkg Delta m sscmp + sscmn + sscm sscmCu dmuQ dmk Um ein Kupfer--Isotop in seine Bestandteile zu zerlegen müssten ihm also SolQtyEedmkX*nccn^J SolQtyEeMEeX/e/ncenMeV E_ Delta m c^ dmk qtyncc^ Ee EeMQ zugeführt werden. Insgesamt hat es in der Münze SolQtynmCuX/MXmol SolQtyNnX*ncNAn n fracmM fracmCuM n N N Kupfer-Atome deren molare Masse Mg beträgt. Der Münze müssten also total SolQtyENX*EeXJ E N E_ N Ee E zugeführt werden um sie in ihre Bestandteile zu zerlegen. Ausrufbox Das ist mehr als der Gesamtenergieverbrauch der Weltbevölkerung in einem Jahr. Ausrufbox
Contained in these collections:
-
Kernreaktionen by uz