Aquarium
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Länge \(\ell\) / Kraft \(F\) / Druck \(p\) / Fläche \(A\) / Ortsfaktor \(g\) / Höhe \(h\) / Dichte \(\varrho\) / Breite \(b\) /
The following formulas must be used to solve the exercise:
\(p = \dfrac{F}{A} \quad \) \(A = ab \quad \) \(p = \varrho g h \quad \)
Exercise:
Die Scheibe eines grossen Zoo-Aquariums ist .m lang und .m hoch. Der Wasserspiegel liegt cm über dem oberen Fensterrand. Wie gross ist die gesamte Kraft die das Wasser auf die Scheibe ausübt?
Solution:
Geg l l b b h cm h % GesKraftF siN % Da der Druck linear mit der Tiefe zunimmt können wir als durchschnittlichen Druck auf die Scheibe von innen den Druck in der Mitte der Scheibe nehmen. Diese liegt al h^prime hpf h + fracb hp unterhalb des Wasserspiegels. Der Druck ist dort al p rho g h^prime pf D gN hp p. Die Fläche der Scheibe beträgt al A Af b l A. Somit beträgt die Kraft auf die Scheibe al F pA Ff p A F. % F Ff FII
Die Scheibe eines grossen Zoo-Aquariums ist .m lang und .m hoch. Der Wasserspiegel liegt cm über dem oberen Fensterrand. Wie gross ist die gesamte Kraft die das Wasser auf die Scheibe ausübt?
Solution:
Geg l l b b h cm h % GesKraftF siN % Da der Druck linear mit der Tiefe zunimmt können wir als durchschnittlichen Druck auf die Scheibe von innen den Druck in der Mitte der Scheibe nehmen. Diese liegt al h^prime hpf h + fracb hp unterhalb des Wasserspiegels. Der Druck ist dort al p rho g h^prime pf D gN hp p. Die Fläche der Scheibe beträgt al A Af b l A. Somit beträgt die Kraft auf die Scheibe al F pA Ff p A F. % F Ff FII
Meta Information
Exercise:
Die Scheibe eines grossen Zoo-Aquariums ist .m lang und .m hoch. Der Wasserspiegel liegt cm über dem oberen Fensterrand. Wie gross ist die gesamte Kraft die das Wasser auf die Scheibe ausübt?
Solution:
Geg l l b b h cm h % GesKraftF siN % Da der Druck linear mit der Tiefe zunimmt können wir als durchschnittlichen Druck auf die Scheibe von innen den Druck in der Mitte der Scheibe nehmen. Diese liegt al h^prime hpf h + fracb hp unterhalb des Wasserspiegels. Der Druck ist dort al p rho g h^prime pf D gN hp p. Die Fläche der Scheibe beträgt al A Af b l A. Somit beträgt die Kraft auf die Scheibe al F pA Ff p A F. % F Ff FII
Die Scheibe eines grossen Zoo-Aquariums ist .m lang und .m hoch. Der Wasserspiegel liegt cm über dem oberen Fensterrand. Wie gross ist die gesamte Kraft die das Wasser auf die Scheibe ausübt?
Solution:
Geg l l b b h cm h % GesKraftF siN % Da der Druck linear mit der Tiefe zunimmt können wir als durchschnittlichen Druck auf die Scheibe von innen den Druck in der Mitte der Scheibe nehmen. Diese liegt al h^prime hpf h + fracb hp unterhalb des Wasserspiegels. Der Druck ist dort al p rho g h^prime pf D gN hp p. Die Fläche der Scheibe beträgt al A Af b l A. Somit beträgt die Kraft auf die Scheibe al F pA Ff p A F. % F Ff FII
Contained in these collections:
-
-
Aquarium by TeXercises
-
Schweredruck by pw
Asked Quantity:
Kraft \(F\)
in
Newton \(\rm N\)
Physical Quantity
Kraft \(F\)
Einfluss, der Körper verformt oder beschleunigt
Masse mal Beschleunigung
Unit
Newton (\(\rm N\))
Base?
SI?
Metric?
Coherent?
Imperial?