Astronomie: Gravitationsfeld 9
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
% April Lie. Ein Mond umkreist seinen Planeten einmal in Tagen mit Bahnradius km. % April Lie. % Triton Neptunmasse: eee kg Neptunradius eeesim a Welche Masse hat der Planet? Um welchen Planeten könnte es sich handeln? b Der Planet hat einen Durchmesser von eeesim. Berechnen Sie die Fallbeschleunigung an seiner Oberfläche. c Geben Sie in Worten zwei Methoden an wie man die Beschleunigung des Planeten auf seiner Bahn um die Sonne berechnen könnte.
Solution:
% April Lie. * &texta fraca^T^ fracGmpi^ Rightarrow mfracpi^a^GT^ fracpi^eeesim^.eesiN m^/kg^. sis^ &quad uuline.eeesikg textquad Das ist die Masse von Neptun. &textb gr fracGmr^ frac.eesiN m^/kg^ .eeesikgeeesim/^ uulinesim/s^ &textc Aus Umlaufzeit und Bahnradius berechnet man die Zentripetalbeschleunigung. Aus der &textquad Gravitationskraft der Sonne berechnet man die Beschleunigung via das Aktionsprinzip Fma. * newpage
% April Lie. Ein Mond umkreist seinen Planeten einmal in Tagen mit Bahnradius km. % April Lie. % Triton Neptunmasse: eee kg Neptunradius eeesim a Welche Masse hat der Planet? Um welchen Planeten könnte es sich handeln? b Der Planet hat einen Durchmesser von eeesim. Berechnen Sie die Fallbeschleunigung an seiner Oberfläche. c Geben Sie in Worten zwei Methoden an wie man die Beschleunigung des Planeten auf seiner Bahn um die Sonne berechnen könnte.
Solution:
% April Lie. * &texta fraca^T^ fracGmpi^ Rightarrow mfracpi^a^GT^ fracpi^eeesim^.eesiN m^/kg^. sis^ &quad uuline.eeesikg textquad Das ist die Masse von Neptun. &textb gr fracGmr^ frac.eesiN m^/kg^ .eeesikgeeesim/^ uulinesim/s^ &textc Aus Umlaufzeit und Bahnradius berechnet man die Zentripetalbeschleunigung. Aus der &textquad Gravitationskraft der Sonne berechnet man die Beschleunigung via das Aktionsprinzip Fma. * newpage
Meta Information
Exercise:
% April Lie. Ein Mond umkreist seinen Planeten einmal in Tagen mit Bahnradius km. % April Lie. % Triton Neptunmasse: eee kg Neptunradius eeesim a Welche Masse hat der Planet? Um welchen Planeten könnte es sich handeln? b Der Planet hat einen Durchmesser von eeesim. Berechnen Sie die Fallbeschleunigung an seiner Oberfläche. c Geben Sie in Worten zwei Methoden an wie man die Beschleunigung des Planeten auf seiner Bahn um die Sonne berechnen könnte.
Solution:
% April Lie. * &texta fraca^T^ fracGmpi^ Rightarrow mfracpi^a^GT^ fracpi^eeesim^.eesiN m^/kg^. sis^ &quad uuline.eeesikg textquad Das ist die Masse von Neptun. &textb gr fracGmr^ frac.eesiN m^/kg^ .eeesikgeeesim/^ uulinesim/s^ &textc Aus Umlaufzeit und Bahnradius berechnet man die Zentripetalbeschleunigung. Aus der &textquad Gravitationskraft der Sonne berechnet man die Beschleunigung via das Aktionsprinzip Fma. * newpage
% April Lie. Ein Mond umkreist seinen Planeten einmal in Tagen mit Bahnradius km. % April Lie. % Triton Neptunmasse: eee kg Neptunradius eeesim a Welche Masse hat der Planet? Um welchen Planeten könnte es sich handeln? b Der Planet hat einen Durchmesser von eeesim. Berechnen Sie die Fallbeschleunigung an seiner Oberfläche. c Geben Sie in Worten zwei Methoden an wie man die Beschleunigung des Planeten auf seiner Bahn um die Sonne berechnen könnte.
Solution:
% April Lie. * &texta fraca^T^ fracGmpi^ Rightarrow mfracpi^a^GT^ fracpi^eeesim^.eesiN m^/kg^. sis^ &quad uuline.eeesikg textquad Das ist die Masse von Neptun. &textb gr fracGmr^ frac.eesiN m^/kg^ .eeesikgeeesim/^ uulinesim/s^ &textc Aus Umlaufzeit und Bahnradius berechnet man die Zentripetalbeschleunigung. Aus der &textquad Gravitationskraft der Sonne berechnet man die Beschleunigung via das Aktionsprinzip Fma. * newpage
Contained in these collections:
-
Astronomie: Gravitationsfeld by Lie