Exercise
https://texercises.com/exercise/bases-relations/
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.

Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Let V a finite dimensional vector space and T:Vlongrightarrow V a linear map an omorphism. Let mathcalBB' be two bases for V. Then T_mathcalB^mathcalB'id_V_mathcalB'^mathcalB T_mathcalB^mathcalB id_V_mathcalB^mathcalB' leftid_V_mathcalB^mathcalB'right^- T_mathcalB^mathcalB id_V_mathcalB^mathcalB'

Solution:
Meta Information
\(\LaTeX\)-Code
Exercise:
Let V a finite dimensional vector space and T:Vlongrightarrow V a linear map an omorphism. Let mathcalBB' be two bases for V. Then T_mathcalB^mathcalB'id_V_mathcalB'^mathcalB T_mathcalB^mathcalB id_V_mathcalB^mathcalB' leftid_V_mathcalB^mathcalB'right^- T_mathcalB^mathcalB id_V_mathcalB^mathcalB'

Solution:
Contained in these collections:

Attributes & Decorations
Tags
basis, eth, hs22, lineare algebra, proof, vector space
Content image
Difficulty
(3, default)
Points
0 (default)
Language
ENG (English)
Type
Proof
Creator rk
Decoration
File
Link