Batteriespeicher
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Stausee fasse VsO Wasser das im Mittel hO über dem Wasserkraftwerk liegt. Die Energiedichte eines Lithium-Ionen-Akkumulators beträgt gemäss Wikipedia maximal RmO resp. RVO. abclist abc Wie gross müsste das Volumen einer Batterie sein die die gleiche Energiemenge speichern kann wie der Stausee? abc Wie gross müsste die Masse einer solchen Batterie sein? abc Wie viel würde so eine Batterie kosten wenn der Batteriepreis pro Speicherkapazität bei phO liegt? abclist
Solution:
Geg V Vs h hO h hat E_m RmO Rm hat E_V RVO RV hat p phO ph rho RWa quad textWasser % SolQtyErho V g hRWaX*VsX*ncgX*hXJ abclist abc GesVolumenV' sim^ Wir berechnen zunächst die potentielle Energie des Wassers im Stausee: al E mgh EF RWa Vs ncg h E. Das Volumen einer Batterie welche diese Energiemenge speichern kann würde SolQtyVbfracEFhat E_VEX/RVXm^ al V' fracEhat E_V VbF fracERV Vb approx VbS betragen. % V' VbF &approx VbS abc GesMassem' sikg SolQtymprfracrho V g hhat E_mRWaX*VsX*ncgX*hX/RmXkg al m' mprF fracRWa Vs ncg hRm mpr approx mprS % m' mprF &approx mprS Das wäre in etwa eine Megatonne! abc GesPreisp si Analog zum Volumen und zur Masse finden wir SolQtypfracrho V g hhat pRWaX*VsX*ncgX*hX/phX al p pF fracRWa Vs ncg hph p approx pS % p pF &approx pS abclist
Ein Stausee fasse VsO Wasser das im Mittel hO über dem Wasserkraftwerk liegt. Die Energiedichte eines Lithium-Ionen-Akkumulators beträgt gemäss Wikipedia maximal RmO resp. RVO. abclist abc Wie gross müsste das Volumen einer Batterie sein die die gleiche Energiemenge speichern kann wie der Stausee? abc Wie gross müsste die Masse einer solchen Batterie sein? abc Wie viel würde so eine Batterie kosten wenn der Batteriepreis pro Speicherkapazität bei phO liegt? abclist
Solution:
Geg V Vs h hO h hat E_m RmO Rm hat E_V RVO RV hat p phO ph rho RWa quad textWasser % SolQtyErho V g hRWaX*VsX*ncgX*hXJ abclist abc GesVolumenV' sim^ Wir berechnen zunächst die potentielle Energie des Wassers im Stausee: al E mgh EF RWa Vs ncg h E. Das Volumen einer Batterie welche diese Energiemenge speichern kann würde SolQtyVbfracEFhat E_VEX/RVXm^ al V' fracEhat E_V VbF fracERV Vb approx VbS betragen. % V' VbF &approx VbS abc GesMassem' sikg SolQtymprfracrho V g hhat E_mRWaX*VsX*ncgX*hX/RmXkg al m' mprF fracRWa Vs ncg hRm mpr approx mprS % m' mprF &approx mprS Das wäre in etwa eine Megatonne! abc GesPreisp si Analog zum Volumen und zur Masse finden wir SolQtypfracrho V g hhat pRWaX*VsX*ncgX*hX/phX al p pF fracRWa Vs ncg hph p approx pS % p pF &approx pS abclist
Meta Information
Exercise:
Ein Stausee fasse VsO Wasser das im Mittel hO über dem Wasserkraftwerk liegt. Die Energiedichte eines Lithium-Ionen-Akkumulators beträgt gemäss Wikipedia maximal RmO resp. RVO. abclist abc Wie gross müsste das Volumen einer Batterie sein die die gleiche Energiemenge speichern kann wie der Stausee? abc Wie gross müsste die Masse einer solchen Batterie sein? abc Wie viel würde so eine Batterie kosten wenn der Batteriepreis pro Speicherkapazität bei phO liegt? abclist
Solution:
Geg V Vs h hO h hat E_m RmO Rm hat E_V RVO RV hat p phO ph rho RWa quad textWasser % SolQtyErho V g hRWaX*VsX*ncgX*hXJ abclist abc GesVolumenV' sim^ Wir berechnen zunächst die potentielle Energie des Wassers im Stausee: al E mgh EF RWa Vs ncg h E. Das Volumen einer Batterie welche diese Energiemenge speichern kann würde SolQtyVbfracEFhat E_VEX/RVXm^ al V' fracEhat E_V VbF fracERV Vb approx VbS betragen. % V' VbF &approx VbS abc GesMassem' sikg SolQtymprfracrho V g hhat E_mRWaX*VsX*ncgX*hX/RmXkg al m' mprF fracRWa Vs ncg hRm mpr approx mprS % m' mprF &approx mprS Das wäre in etwa eine Megatonne! abc GesPreisp si Analog zum Volumen und zur Masse finden wir SolQtypfracrho V g hhat pRWaX*VsX*ncgX*hX/phX al p pF fracRWa Vs ncg hph p approx pS % p pF &approx pS abclist
Ein Stausee fasse VsO Wasser das im Mittel hO über dem Wasserkraftwerk liegt. Die Energiedichte eines Lithium-Ionen-Akkumulators beträgt gemäss Wikipedia maximal RmO resp. RVO. abclist abc Wie gross müsste das Volumen einer Batterie sein die die gleiche Energiemenge speichern kann wie der Stausee? abc Wie gross müsste die Masse einer solchen Batterie sein? abc Wie viel würde so eine Batterie kosten wenn der Batteriepreis pro Speicherkapazität bei phO liegt? abclist
Solution:
Geg V Vs h hO h hat E_m RmO Rm hat E_V RVO RV hat p phO ph rho RWa quad textWasser % SolQtyErho V g hRWaX*VsX*ncgX*hXJ abclist abc GesVolumenV' sim^ Wir berechnen zunächst die potentielle Energie des Wassers im Stausee: al E mgh EF RWa Vs ncg h E. Das Volumen einer Batterie welche diese Energiemenge speichern kann würde SolQtyVbfracEFhat E_VEX/RVXm^ al V' fracEhat E_V VbF fracERV Vb approx VbS betragen. % V' VbF &approx VbS abc GesMassem' sikg SolQtymprfracrho V g hhat E_mRWaX*VsX*ncgX*hX/RmXkg al m' mprF fracRWa Vs ncg hRm mpr approx mprS % m' mprF &approx mprS Das wäre in etwa eine Megatonne! abc GesPreisp si Analog zum Volumen und zur Masse finden wir SolQtypfracrho V g hhat pRWaX*VsX*ncgX*hX/phX al p pF fracRWa Vs ncg hph p approx pS % p pF &approx pS abclist
Contained in these collections:
-
Klima & Nachhaltigkeit by pw