Blei-Masse in Gesteinsprobe
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
The following formulas must be used to solve the exercise:
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Das natürliche Vorkommen der Blei-Isotope isotopePb isotopePb und isotopePb in der Natur beträgt jeweils .% .% beziehungsweise .%. In einer Gesteinsprobe mit mUrO Uran- findet man mPtO des Isotops isotopePb. Wie viel Blei befindet sich insgesamt alle Isotope in der Probe falls ihr Alter tO ist? Uran- hat TUO Halbwertszeit.
Solution:
Währ heute in der Gesteinsprobe noch n_t fracmM fracmUrMU nUt N_t fracmM sscNA NUt Uran--Kerne sind waren es vor tO N_ N_t ^fractT fracmM sscNA ^fractT NUt ^fractTU Nz. Die Differenz also N_ N_ - N_t Nz - NUt dN n_ ns ist zu Blei- zerfallen. Das entspricht tilde m_ n_ M_ ns MP ms Von den vorhandenen mPtO sind also m m_ - tilde m_ mPt - ms m nicht aus Uran-Zerfall was den eta.% der natürlichen Häufigkeit entspricht. Total hat es also sscmPb fracmeta fracm. hmPb natürliches Blei im Gestein. Zusammen mit dem aus den Uranzerfällen findet man: sscmtot sscmPb + tilde m_ hmPb +ms mPbt
Das natürliche Vorkommen der Blei-Isotope isotopePb isotopePb und isotopePb in der Natur beträgt jeweils .% .% beziehungsweise .%. In einer Gesteinsprobe mit mUrO Uran- findet man mPtO des Isotops isotopePb. Wie viel Blei befindet sich insgesamt alle Isotope in der Probe falls ihr Alter tO ist? Uran- hat TUO Halbwertszeit.
Solution:
Währ heute in der Gesteinsprobe noch n_t fracmM fracmUrMU nUt N_t fracmM sscNA NUt Uran--Kerne sind waren es vor tO N_ N_t ^fractT fracmM sscNA ^fractT NUt ^fractTU Nz. Die Differenz also N_ N_ - N_t Nz - NUt dN n_ ns ist zu Blei- zerfallen. Das entspricht tilde m_ n_ M_ ns MP ms Von den vorhandenen mPtO sind also m m_ - tilde m_ mPt - ms m nicht aus Uran-Zerfall was den eta.% der natürlichen Häufigkeit entspricht. Total hat es also sscmPb fracmeta fracm. hmPb natürliches Blei im Gestein. Zusammen mit dem aus den Uranzerfällen findet man: sscmtot sscmPb + tilde m_ hmPb +ms mPbt
Meta Information
Exercise:
Das natürliche Vorkommen der Blei-Isotope isotopePb isotopePb und isotopePb in der Natur beträgt jeweils .% .% beziehungsweise .%. In einer Gesteinsprobe mit mUrO Uran- findet man mPtO des Isotops isotopePb. Wie viel Blei befindet sich insgesamt alle Isotope in der Probe falls ihr Alter tO ist? Uran- hat TUO Halbwertszeit.
Solution:
Währ heute in der Gesteinsprobe noch n_t fracmM fracmUrMU nUt N_t fracmM sscNA NUt Uran--Kerne sind waren es vor tO N_ N_t ^fractT fracmM sscNA ^fractT NUt ^fractTU Nz. Die Differenz also N_ N_ - N_t Nz - NUt dN n_ ns ist zu Blei- zerfallen. Das entspricht tilde m_ n_ M_ ns MP ms Von den vorhandenen mPtO sind also m m_ - tilde m_ mPt - ms m nicht aus Uran-Zerfall was den eta.% der natürlichen Häufigkeit entspricht. Total hat es also sscmPb fracmeta fracm. hmPb natürliches Blei im Gestein. Zusammen mit dem aus den Uranzerfällen findet man: sscmtot sscmPb + tilde m_ hmPb +ms mPbt
Das natürliche Vorkommen der Blei-Isotope isotopePb isotopePb und isotopePb in der Natur beträgt jeweils .% .% beziehungsweise .%. In einer Gesteinsprobe mit mUrO Uran- findet man mPtO des Isotops isotopePb. Wie viel Blei befindet sich insgesamt alle Isotope in der Probe falls ihr Alter tO ist? Uran- hat TUO Halbwertszeit.
Solution:
Währ heute in der Gesteinsprobe noch n_t fracmM fracmUrMU nUt N_t fracmM sscNA NUt Uran--Kerne sind waren es vor tO N_ N_t ^fractT fracmM sscNA ^fractT NUt ^fractTU Nz. Die Differenz also N_ N_ - N_t Nz - NUt dN n_ ns ist zu Blei- zerfallen. Das entspricht tilde m_ n_ M_ ns MP ms Von den vorhandenen mPtO sind also m m_ - tilde m_ mPt - ms m nicht aus Uran-Zerfall was den eta.% der natürlichen Häufigkeit entspricht. Total hat es also sscmPb fracmeta fracm. hmPb natürliches Blei im Gestein. Zusammen mit dem aus den Uranzerfällen findet man: sscmtot sscmPb + tilde m_ hmPb +ms mPbt
Contained in these collections:
-
Uran-Blei-Methode mit zusätzlichem Blei by TeXercises
Asked Quantity:
Masse \(m\)
in
Kilogramm \(\rm kg\)
Physical Quantity
Eigenschaft der Materie
Unit
Base?
SI?
Metric?
Coherent?
Imperial?