Brechung am Glasprisma
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Lichtstrahl tritt wie skizziert aus einem Glasprisma dessen Grundfläche ein gleichseitiges Dreieck ist aus und trifft auf eine planparallele Platte. abcliste abc Vervollständige den weiteren Weg des Strahls durch die planparallele Platte. Schreibe die Grösse der Winkel in Grad an! abc An welcher Stelle und unter welchem Winkel trat der skizzierte Strahl in das Prisma ein? Konstruiere! Schreibe die Grösse der Winkel in Grad an! abcliste textbfÜbergang Luft-Glasvspacept tabularc||c|c|c|c|c|c|c|c|c|c rulexpt.ex alpha & degr & degr & degr & degr & degr & degr & degr & degr & degr & degr hline rulexpt.ex beta & degr & .degr & degr & degr & degr & degr & degr & degr & degr & degr tabularvspacept Grenzwinkel der Totalreflexion: degrvspacept textbfHinweis: Nimm an dass das Verhältnis der Winkel regelmässig verläuft! Z. B. alphadegr;rightarrow;betadegr. vspace.cm figureH centering tikzpicturescale %draw colorgray!step. -- grid .; draw fillgray! ------cycle; scoperotate around:.- draw fillgray! .-rectangle.-; draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Solution:
Skizze der Lösung: figureH centering tikzpicturelatex %draw step.colorgray!opacity. -- grid ; %fill circle .; %Dreieck draw fillgray! opacity. ------cycle; %Lösung b draw thickGreendirected ..--.; draw dashedrotate around-:.. ..--.; draw thickGreendirected ..--..; draw thickGreendirected ..--..; %draw thickGreendirected rotate around-:.. .--..; scopexshift-.cmyshift-.cm draw ..arc::.; scope fill ..circle.; draw Green .. arc ::.; node Green at .. scriptsize degr; node Green at .. scriptsize degr; scoperotate around:.- draw fillgray! .-rectangle.-;%Planparallele Platte %Lösung a draw dashed .--.-.; draw thickReddirected .---.-; draw dashed .-.--.-; draw thick Red directed .---.-; draw Red .-. arc ::.; node Red at .-. scriptsize degr; draw Red .-. arc :.:.; node Red at .-. scriptsize .degr; draw Red .-. arc :.:.; node Red at .- scriptsize .degr; draw Red .-. arc ::.; node Red at .-. scriptsize degr; % Grad Winkel draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope %Strahl mit rechtem Winkel draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Ein Lichtstrahl tritt wie skizziert aus einem Glasprisma dessen Grundfläche ein gleichseitiges Dreieck ist aus und trifft auf eine planparallele Platte. abcliste abc Vervollständige den weiteren Weg des Strahls durch die planparallele Platte. Schreibe die Grösse der Winkel in Grad an! abc An welcher Stelle und unter welchem Winkel trat der skizzierte Strahl in das Prisma ein? Konstruiere! Schreibe die Grösse der Winkel in Grad an! abcliste textbfÜbergang Luft-Glasvspacept tabularc||c|c|c|c|c|c|c|c|c|c rulexpt.ex alpha & degr & degr & degr & degr & degr & degr & degr & degr & degr & degr hline rulexpt.ex beta & degr & .degr & degr & degr & degr & degr & degr & degr & degr & degr tabularvspacept Grenzwinkel der Totalreflexion: degrvspacept textbfHinweis: Nimm an dass das Verhältnis der Winkel regelmässig verläuft! Z. B. alphadegr;rightarrow;betadegr. vspace.cm figureH centering tikzpicturescale %draw colorgray!step. -- grid .; draw fillgray! ------cycle; scoperotate around:.- draw fillgray! .-rectangle.-; draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Solution:
Skizze der Lösung: figureH centering tikzpicturelatex %draw step.colorgray!opacity. -- grid ; %fill circle .; %Dreieck draw fillgray! opacity. ------cycle; %Lösung b draw thickGreendirected ..--.; draw dashedrotate around-:.. ..--.; draw thickGreendirected ..--..; draw thickGreendirected ..--..; %draw thickGreendirected rotate around-:.. .--..; scopexshift-.cmyshift-.cm draw ..arc::.; scope fill ..circle.; draw Green .. arc ::.; node Green at .. scriptsize degr; node Green at .. scriptsize degr; scoperotate around:.- draw fillgray! .-rectangle.-;%Planparallele Platte %Lösung a draw dashed .--.-.; draw thickReddirected .---.-; draw dashed .-.--.-; draw thick Red directed .---.-; draw Red .-. arc ::.; node Red at .-. scriptsize degr; draw Red .-. arc :.:.; node Red at .-. scriptsize .degr; draw Red .-. arc :.:.; node Red at .- scriptsize .degr; draw Red .-. arc ::.; node Red at .-. scriptsize degr; % Grad Winkel draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope %Strahl mit rechtem Winkel draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Meta Information
Exercise:
Ein Lichtstrahl tritt wie skizziert aus einem Glasprisma dessen Grundfläche ein gleichseitiges Dreieck ist aus und trifft auf eine planparallele Platte. abcliste abc Vervollständige den weiteren Weg des Strahls durch die planparallele Platte. Schreibe die Grösse der Winkel in Grad an! abc An welcher Stelle und unter welchem Winkel trat der skizzierte Strahl in das Prisma ein? Konstruiere! Schreibe die Grösse der Winkel in Grad an! abcliste textbfÜbergang Luft-Glasvspacept tabularc||c|c|c|c|c|c|c|c|c|c rulexpt.ex alpha & degr & degr & degr & degr & degr & degr & degr & degr & degr & degr hline rulexpt.ex beta & degr & .degr & degr & degr & degr & degr & degr & degr & degr & degr tabularvspacept Grenzwinkel der Totalreflexion: degrvspacept textbfHinweis: Nimm an dass das Verhältnis der Winkel regelmässig verläuft! Z. B. alphadegr;rightarrow;betadegr. vspace.cm figureH centering tikzpicturescale %draw colorgray!step. -- grid .; draw fillgray! ------cycle; scoperotate around:.- draw fillgray! .-rectangle.-; draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Solution:
Skizze der Lösung: figureH centering tikzpicturelatex %draw step.colorgray!opacity. -- grid ; %fill circle .; %Dreieck draw fillgray! opacity. ------cycle; %Lösung b draw thickGreendirected ..--.; draw dashedrotate around-:.. ..--.; draw thickGreendirected ..--..; draw thickGreendirected ..--..; %draw thickGreendirected rotate around-:.. .--..; scopexshift-.cmyshift-.cm draw ..arc::.; scope fill ..circle.; draw Green .. arc ::.; node Green at .. scriptsize degr; node Green at .. scriptsize degr; scoperotate around:.- draw fillgray! .-rectangle.-;%Planparallele Platte %Lösung a draw dashed .--.-.; draw thickReddirected .---.-; draw dashed .-.--.-; draw thick Red directed .---.-; draw Red .-. arc ::.; node Red at .-. scriptsize degr; draw Red .-. arc :.:.; node Red at .-. scriptsize .degr; draw Red .-. arc :.:.; node Red at .- scriptsize .degr; draw Red .-. arc ::.; node Red at .-. scriptsize degr; % Grad Winkel draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope %Strahl mit rechtem Winkel draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Ein Lichtstrahl tritt wie skizziert aus einem Glasprisma dessen Grundfläche ein gleichseitiges Dreieck ist aus und trifft auf eine planparallele Platte. abcliste abc Vervollständige den weiteren Weg des Strahls durch die planparallele Platte. Schreibe die Grösse der Winkel in Grad an! abc An welcher Stelle und unter welchem Winkel trat der skizzierte Strahl in das Prisma ein? Konstruiere! Schreibe die Grösse der Winkel in Grad an! abcliste textbfÜbergang Luft-Glasvspacept tabularc||c|c|c|c|c|c|c|c|c|c rulexpt.ex alpha & degr & degr & degr & degr & degr & degr & degr & degr & degr & degr hline rulexpt.ex beta & degr & .degr & degr & degr & degr & degr & degr & degr & degr & degr tabularvspacept Grenzwinkel der Totalreflexion: degrvspacept textbfHinweis: Nimm an dass das Verhältnis der Winkel regelmässig verläuft! Z. B. alphadegr;rightarrow;betadegr. vspace.cm figureH centering tikzpicturescale %draw colorgray!step. -- grid .; draw fillgray! ------cycle; scoperotate around:.- draw fillgray! .-rectangle.-; draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Solution:
Skizze der Lösung: figureH centering tikzpicturelatex %draw step.colorgray!opacity. -- grid ; %fill circle .; %Dreieck draw fillgray! opacity. ------cycle; %Lösung b draw thickGreendirected ..--.; draw dashedrotate around-:.. ..--.; draw thickGreendirected ..--..; draw thickGreendirected ..--..; %draw thickGreendirected rotate around-:.. .--..; scopexshift-.cmyshift-.cm draw ..arc::.; scope fill ..circle.; draw Green .. arc ::.; node Green at .. scriptsize degr; node Green at .. scriptsize degr; scoperotate around:.- draw fillgray! .-rectangle.-;%Planparallele Platte %Lösung a draw dashed .--.-.; draw thickReddirected .---.-; draw dashed .-.--.-; draw thick Red directed .---.-; draw Red .-. arc ::.; node Red at .-. scriptsize degr; draw Red .-. arc :.:.; node Red at .-. scriptsize .degr; draw Red .-. arc :.:.; node Red at .- scriptsize .degr; draw Red .-. arc ::.; node Red at .-. scriptsize degr; % Grad Winkel draw .----; draw rotate around-:----.-; draw .-arc:-:.; draw rotate around-.:- node at .- small degr; scope %Strahl mit rechtem Winkel draw very thickdirected .--.-; draw arc::.; fill rotate around:. .circle.; tikzpicture figure
Contained in these collections:

