Charakterisierung des Tangentialraums
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Sei Msubseteq mathbbR^n eine k-dimensionale Untermannigfaltigkeit von mathbbR^n pin M Usubseteq mathbbR^n offene Umgebung von p. abcliste abc Ist phi:Urightarrow Vsubseteq mathbbR^n ein Diffeomorphismus mit phip und phiUcap MVcapmathbbR^ktimes ^n-k so ist T_pMptimes textD_phi^-mathbbR^ktimes ^n-k. abc Ist Fin C^inftyUmathbbR^n-k und in mathbbR^n-k ein regulärer Wert von F s.d. Ucap MF^- wie in . wo ist T_pMptimes textkertextD_pF. Insbesondere ist T_pM ein k-dimensionaler Vektorraum. abcliste
Solution:
Beweis. abcliste abc Zu zeigen: gamma'| gamma:-epsilon epsilonrightarrow M textdifferenzierbar mit gammaptextD_phi^-mathbbR^ktimes^n-k Beweis von supseteq Sei vin mathbbR^ktimes^n-k. Wähle epsilon s.d. tvin V forall tin -epsilon epsilon definiere gamma:-epsilon epsilonrightarrow M gammatphi^-tv. Dann ist gamma'textD_phi^-v Kettenregel Beweis von subseteq Sei gamma:-epsilon epsilonrightarrow M differenzierbar mit gammap O.B.d.A. gammatin U forall tin -epsilon epsilon. Betrachte phicirc gamma: -epsilon epsilonrightarrow Vcap mathbbR^ktimes ^n-k. Dann ist phicirc gamma'textD_pphigamma' also gamma'textD_phi^-v. abc Für gamma:-epsilon epsilonrightarrow Mcap U mit gamma ist Fcirc gamma also textD_pFgamma'Fcirc gamma' d.h. gamma'in textkertextD_pF. Somit T_pMsubseteq ptimes textkerD_pF also glqqgrqq kn-textdimtextimtextD_pF da p regulärer Punkt. abcliste
Sei Msubseteq mathbbR^n eine k-dimensionale Untermannigfaltigkeit von mathbbR^n pin M Usubseteq mathbbR^n offene Umgebung von p. abcliste abc Ist phi:Urightarrow Vsubseteq mathbbR^n ein Diffeomorphismus mit phip und phiUcap MVcapmathbbR^ktimes ^n-k so ist T_pMptimes textD_phi^-mathbbR^ktimes ^n-k. abc Ist Fin C^inftyUmathbbR^n-k und in mathbbR^n-k ein regulärer Wert von F s.d. Ucap MF^- wie in . wo ist T_pMptimes textkertextD_pF. Insbesondere ist T_pM ein k-dimensionaler Vektorraum. abcliste
Solution:
Beweis. abcliste abc Zu zeigen: gamma'| gamma:-epsilon epsilonrightarrow M textdifferenzierbar mit gammaptextD_phi^-mathbbR^ktimes^n-k Beweis von supseteq Sei vin mathbbR^ktimes^n-k. Wähle epsilon s.d. tvin V forall tin -epsilon epsilon definiere gamma:-epsilon epsilonrightarrow M gammatphi^-tv. Dann ist gamma'textD_phi^-v Kettenregel Beweis von subseteq Sei gamma:-epsilon epsilonrightarrow M differenzierbar mit gammap O.B.d.A. gammatin U forall tin -epsilon epsilon. Betrachte phicirc gamma: -epsilon epsilonrightarrow Vcap mathbbR^ktimes ^n-k. Dann ist phicirc gamma'textD_pphigamma' also gamma'textD_phi^-v. abc Für gamma:-epsilon epsilonrightarrow Mcap U mit gamma ist Fcirc gamma also textD_pFgamma'Fcirc gamma' d.h. gamma'in textkertextD_pF. Somit T_pMsubseteq ptimes textkerD_pF also glqqgrqq kn-textdimtextimtextD_pF da p regulärer Punkt. abcliste
Meta Information
Exercise:
Sei Msubseteq mathbbR^n eine k-dimensionale Untermannigfaltigkeit von mathbbR^n pin M Usubseteq mathbbR^n offene Umgebung von p. abcliste abc Ist phi:Urightarrow Vsubseteq mathbbR^n ein Diffeomorphismus mit phip und phiUcap MVcapmathbbR^ktimes ^n-k so ist T_pMptimes textD_phi^-mathbbR^ktimes ^n-k. abc Ist Fin C^inftyUmathbbR^n-k und in mathbbR^n-k ein regulärer Wert von F s.d. Ucap MF^- wie in . wo ist T_pMptimes textkertextD_pF. Insbesondere ist T_pM ein k-dimensionaler Vektorraum. abcliste
Solution:
Beweis. abcliste abc Zu zeigen: gamma'| gamma:-epsilon epsilonrightarrow M textdifferenzierbar mit gammaptextD_phi^-mathbbR^ktimes^n-k Beweis von supseteq Sei vin mathbbR^ktimes^n-k. Wähle epsilon s.d. tvin V forall tin -epsilon epsilon definiere gamma:-epsilon epsilonrightarrow M gammatphi^-tv. Dann ist gamma'textD_phi^-v Kettenregel Beweis von subseteq Sei gamma:-epsilon epsilonrightarrow M differenzierbar mit gammap O.B.d.A. gammatin U forall tin -epsilon epsilon. Betrachte phicirc gamma: -epsilon epsilonrightarrow Vcap mathbbR^ktimes ^n-k. Dann ist phicirc gamma'textD_pphigamma' also gamma'textD_phi^-v. abc Für gamma:-epsilon epsilonrightarrow Mcap U mit gamma ist Fcirc gamma also textD_pFgamma'Fcirc gamma' d.h. gamma'in textkertextD_pF. Somit T_pMsubseteq ptimes textkerD_pF also glqqgrqq kn-textdimtextimtextD_pF da p regulärer Punkt. abcliste
Sei Msubseteq mathbbR^n eine k-dimensionale Untermannigfaltigkeit von mathbbR^n pin M Usubseteq mathbbR^n offene Umgebung von p. abcliste abc Ist phi:Urightarrow Vsubseteq mathbbR^n ein Diffeomorphismus mit phip und phiUcap MVcapmathbbR^ktimes ^n-k so ist T_pMptimes textD_phi^-mathbbR^ktimes ^n-k. abc Ist Fin C^inftyUmathbbR^n-k und in mathbbR^n-k ein regulärer Wert von F s.d. Ucap MF^- wie in . wo ist T_pMptimes textkertextD_pF. Insbesondere ist T_pM ein k-dimensionaler Vektorraum. abcliste
Solution:
Beweis. abcliste abc Zu zeigen: gamma'| gamma:-epsilon epsilonrightarrow M textdifferenzierbar mit gammaptextD_phi^-mathbbR^ktimes^n-k Beweis von supseteq Sei vin mathbbR^ktimes^n-k. Wähle epsilon s.d. tvin V forall tin -epsilon epsilon definiere gamma:-epsilon epsilonrightarrow M gammatphi^-tv. Dann ist gamma'textD_phi^-v Kettenregel Beweis von subseteq Sei gamma:-epsilon epsilonrightarrow M differenzierbar mit gammap O.B.d.A. gammatin U forall tin -epsilon epsilon. Betrachte phicirc gamma: -epsilon epsilonrightarrow Vcap mathbbR^ktimes ^n-k. Dann ist phicirc gamma'textD_pphigamma' also gamma'textD_phi^-v. abc Für gamma:-epsilon epsilonrightarrow Mcap U mit gamma ist Fcirc gamma also textD_pFgamma'Fcirc gamma' d.h. gamma'in textkertextD_pF. Somit T_pMsubseteq ptimes textkerD_pF also glqqgrqq kn-textdimtextimtextD_pF da p regulärer Punkt. abcliste
Contained in these collections:

