Exercise
https://texercises.com/exercise/determinants-of-block-matrices/
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.

Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Consider a block matrix M of the type M leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright where Ain M_rtimes rK Cin M_stimes sK Bin M_rtimes sK. Proof that textdetMtextdetA textdetC.

Solution:
Proof. Define DABC:textdet leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright as a function D:M_rtimes rKtimes M_rtimes sKtimes M_stimes sK longrightarrow K. If we fix the first two matrices A and B then the function M_stimes sK longrightarrow K Clongmapsto DABC is s-linear and alternating. By a previous theorem we have DABCtextdetC DABI_s. Let's calculate DABI_s. By definition DABI_s leftarray@c|c@ matrix A matrix & B hline matrix matrix & I_s arrayright By doing row operations of the type R_i+cR_jlongrightarrow R_k jneq i cin K we can use the last s-rows of leftarray@c|c@ matrix A matrix & B hline matrix matrix & I_s arrayright to get to the matrix leftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright. By a previous theorem det leftarray@c|c@ matrix A matrix & B hline matrix matrix & I_s arrayright textdetleftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright. The function M_rtimes rKlongrightarrow K Alongmapsto det leftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright is r-linear and alternating. By a previous result we have det leftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright textdetAtextdet leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright textdetA textdetI_r+s textdetA going back to the results above we get that det leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright DABC:textdetA textdetC.
Meta Information
\(\LaTeX\)-Code
Exercise:
Consider a block matrix M of the type M leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright where Ain M_rtimes rK Cin M_stimes sK Bin M_rtimes sK. Proof that textdetMtextdetA textdetC.

Solution:
Proof. Define DABC:textdet leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright as a function D:M_rtimes rKtimes M_rtimes sKtimes M_stimes sK longrightarrow K. If we fix the first two matrices A and B then the function M_stimes sK longrightarrow K Clongmapsto DABC is s-linear and alternating. By a previous theorem we have DABCtextdetC DABI_s. Let's calculate DABI_s. By definition DABI_s leftarray@c|c@ matrix A matrix & B hline matrix matrix & I_s arrayright By doing row operations of the type R_i+cR_jlongrightarrow R_k jneq i cin K we can use the last s-rows of leftarray@c|c@ matrix A matrix & B hline matrix matrix & I_s arrayright to get to the matrix leftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright. By a previous theorem det leftarray@c|c@ matrix A matrix & B hline matrix matrix & I_s arrayright textdetleftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright. The function M_rtimes rKlongrightarrow K Alongmapsto det leftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright is r-linear and alternating. By a previous result we have det leftarray@c|c@ matrix A matrix & hline matrix matrix & I_s arrayright textdetAtextdet leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright textdetA textdetI_r+s textdetA going back to the results above we get that det leftarray@c|c@ matrix A matrix & B hline matrix matrix & C arrayright DABC:textdetA textdetC.
Contained in these collections:

Attributes & Decorations
Tags
determinant, eth, fs23, lineare algebra, proof
Content image
Difficulty
(3, default)
Points
0 (default)
Language
ENG (English)
Type
Proof
Creator rk
Decoration
File
Link