Dichte von Blei
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Volumen \(V\) / Dichte \(\varrho\) / Längenausdehnungskoeffizient \(\alpha\) /
The following formulas must be used to solve the exercise:
\(\varrho = \dfrac{m}{V} \quad \) \(V = V_0 \cdot (1+ 3\alpha \cdot \Delta\vartheta) \quad \)
Exercise:
Blei hat bei degreeCelsius eine Dichte von kilogrampercubicmeter und einen linearen Aus-dehn-ungs-ko-effi-zi-en-ten von per-modereciprocal.perkelvin. Welche Dichte hat Blei bei -degreeCelsius?
Solution:
newqtyTi.celsius newqtyrikgpcm newqtyper-modereciprocala.perkelvin newqtyTii-celsius % Wir starten mit der Gleichung für Volumenausdehnung und ersetzen darin die unbekannten Variablen. Danach lösen wir nach der Dichte bei Tii auf. solqtyrfracrho_+alphatheta-theta_rin/+*an*Tiin-Tinkgpcm PTitleVolumenausdehnung PSchrittVolumenausdehnung PSchrittVariablen ersetzen PGleichungV V_ +alphaDeltatheta PGleichungfracmrho fracmrho_ +alphatheta-theta_ AlgebraSchritte MGleichungmrho_ mrho + alpha m rho theta - alpha m rho theta_ MGleichungmrho + alpha m rho theta - alpha m rho theta_ mrho_ MGleichungmrho +alphatheta-theta_ mrho_ MGleichungrho rf PHYSMATH Die Dichte beträgt damit al rho rf fracri+ a qtyTii - Ti Sci r.
Blei hat bei degreeCelsius eine Dichte von kilogrampercubicmeter und einen linearen Aus-dehn-ungs-ko-effi-zi-en-ten von per-modereciprocal.perkelvin. Welche Dichte hat Blei bei -degreeCelsius?
Solution:
newqtyTi.celsius newqtyrikgpcm newqtyper-modereciprocala.perkelvin newqtyTii-celsius % Wir starten mit der Gleichung für Volumenausdehnung und ersetzen darin die unbekannten Variablen. Danach lösen wir nach der Dichte bei Tii auf. solqtyrfracrho_+alphatheta-theta_rin/+*an*Tiin-Tinkgpcm PTitleVolumenausdehnung PSchrittVolumenausdehnung PSchrittVariablen ersetzen PGleichungV V_ +alphaDeltatheta PGleichungfracmrho fracmrho_ +alphatheta-theta_ AlgebraSchritte MGleichungmrho_ mrho + alpha m rho theta - alpha m rho theta_ MGleichungmrho + alpha m rho theta - alpha m rho theta_ mrho_ MGleichungmrho +alphatheta-theta_ mrho_ MGleichungrho rf PHYSMATH Die Dichte beträgt damit al rho rf fracri+ a qtyTii - Ti Sci r.
Meta Information
Exercise:
Blei hat bei degreeCelsius eine Dichte von kilogrampercubicmeter und einen linearen Aus-dehn-ungs-ko-effi-zi-en-ten von per-modereciprocal.perkelvin. Welche Dichte hat Blei bei -degreeCelsius?
Solution:
newqtyTi.celsius newqtyrikgpcm newqtyper-modereciprocala.perkelvin newqtyTii-celsius % Wir starten mit der Gleichung für Volumenausdehnung und ersetzen darin die unbekannten Variablen. Danach lösen wir nach der Dichte bei Tii auf. solqtyrfracrho_+alphatheta-theta_rin/+*an*Tiin-Tinkgpcm PTitleVolumenausdehnung PSchrittVolumenausdehnung PSchrittVariablen ersetzen PGleichungV V_ +alphaDeltatheta PGleichungfracmrho fracmrho_ +alphatheta-theta_ AlgebraSchritte MGleichungmrho_ mrho + alpha m rho theta - alpha m rho theta_ MGleichungmrho + alpha m rho theta - alpha m rho theta_ mrho_ MGleichungmrho +alphatheta-theta_ mrho_ MGleichungrho rf PHYSMATH Die Dichte beträgt damit al rho rf fracri+ a qtyTii - Ti Sci r.
Blei hat bei degreeCelsius eine Dichte von kilogrampercubicmeter und einen linearen Aus-dehn-ungs-ko-effi-zi-en-ten von per-modereciprocal.perkelvin. Welche Dichte hat Blei bei -degreeCelsius?
Solution:
newqtyTi.celsius newqtyrikgpcm newqtyper-modereciprocala.perkelvin newqtyTii-celsius % Wir starten mit der Gleichung für Volumenausdehnung und ersetzen darin die unbekannten Variablen. Danach lösen wir nach der Dichte bei Tii auf. solqtyrfracrho_+alphatheta-theta_rin/+*an*Tiin-Tinkgpcm PTitleVolumenausdehnung PSchrittVolumenausdehnung PSchrittVariablen ersetzen PGleichungV V_ +alphaDeltatheta PGleichungfracmrho fracmrho_ +alphatheta-theta_ AlgebraSchritte MGleichungmrho_ mrho + alpha m rho theta - alpha m rho theta_ MGleichungmrho + alpha m rho theta - alpha m rho theta_ mrho_ MGleichungmrho +alphatheta-theta_ mrho_ MGleichungrho rf PHYSMATH Die Dichte beträgt damit al rho rf fracri+ a qtyTii - Ti Sci r.
Contained in these collections:
-
-
Dichteänderung bei Temperaturänderung by TeXercises
-
Dichte bei anderer Temperatur by TeXercises
-
-
Physical Quantity
Massendichte
Verhältnis von Masse zu Volumen
\(\varrho = \dfrac{m}{V}\)
Unit
Kilogramm pro Kubikmeter (\(\rm \frac{kg}{m^3}\))
Base?
SI?
Metric?
Coherent?
Imperial?