Drei Punktladungen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Drei Ladungen befinden sich an den Ecken eines Quadrates mit sicm Seitenlänge s. Abb.. enumerate item Zeichnen Sie die Feldvektoren im Punkt A inkl. Resultiere ein. Sie können direkt in die Skizze zeichnen. item Berechnen Sie die resultiere Feldstärke im Punkt A. item Welche Beschleunigung erfährt ein Proton im Punkt A und in welche Richtung zeigt der Beschleunigungsvektor? enumerate figureH centering tikzpicturelatex draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . noderight below A; tikzpicture figure
Solution:
enumerate item Lösungsskizze: figureH centering tikzpicturelatexscale draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . nodeabove right A; %Lösung draw thick red- --nodeabovevecE_ ; draw thick red- --noderightvecE_ -; draw thick red- -- nodeabovexshift.cmvecE_.-.; draw thick red-dashed --nodeleftvecE_ -; draw thick Green- --nodeabovexshift-.cmvecE_ -; draw thick Green-dashed .-.--nodebelowyshift-.cmvecE_ .-.; draw very thick Blu --nodeleftE_mathrmres .-.; tikzpicture figure item Die Einzelfeldstärken sind: Efracpiepsilon_fracQr^ Womit wir erhalten: E_.EsiN/Cqquad E_.EsiN/Cqquad E_.EsiN/C Die Beträge der Vektoradditionen können jeweils mit Pythagoras berechnet werden: E_sqrtE_^+E_^.EsiN/C E_ und E_ stehen wieder senkrecht aufeinander. Deshalb kann wieder Pythagoras angewet werden: E_mathrmressqrtE_^+E_^boldsymbol.EmathrmN/C item Es gilt am Punkt A: F_mathrmpq E_mathrmresm_mathrmpa Ra afrac+e E_mathrmresm_mathrmpboldsymbol.Emathrmm/s^ Die Beschleunigung zeigt in Richtung von vecE_mathrmres. enumerate
Drei Ladungen befinden sich an den Ecken eines Quadrates mit sicm Seitenlänge s. Abb.. enumerate item Zeichnen Sie die Feldvektoren im Punkt A inkl. Resultiere ein. Sie können direkt in die Skizze zeichnen. item Berechnen Sie die resultiere Feldstärke im Punkt A. item Welche Beschleunigung erfährt ein Proton im Punkt A und in welche Richtung zeigt der Beschleunigungsvektor? enumerate figureH centering tikzpicturelatex draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . noderight below A; tikzpicture figure
Solution:
enumerate item Lösungsskizze: figureH centering tikzpicturelatexscale draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . nodeabove right A; %Lösung draw thick red- --nodeabovevecE_ ; draw thick red- --noderightvecE_ -; draw thick red- -- nodeabovexshift.cmvecE_.-.; draw thick red-dashed --nodeleftvecE_ -; draw thick Green- --nodeabovexshift-.cmvecE_ -; draw thick Green-dashed .-.--nodebelowyshift-.cmvecE_ .-.; draw very thick Blu --nodeleftE_mathrmres .-.; tikzpicture figure item Die Einzelfeldstärken sind: Efracpiepsilon_fracQr^ Womit wir erhalten: E_.EsiN/Cqquad E_.EsiN/Cqquad E_.EsiN/C Die Beträge der Vektoradditionen können jeweils mit Pythagoras berechnet werden: E_sqrtE_^+E_^.EsiN/C E_ und E_ stehen wieder senkrecht aufeinander. Deshalb kann wieder Pythagoras angewet werden: E_mathrmressqrtE_^+E_^boldsymbol.EmathrmN/C item Es gilt am Punkt A: F_mathrmpq E_mathrmresm_mathrmpa Ra afrac+e E_mathrmresm_mathrmpboldsymbol.Emathrmm/s^ Die Beschleunigung zeigt in Richtung von vecE_mathrmres. enumerate
Meta Information
Exercise:
Drei Ladungen befinden sich an den Ecken eines Quadrates mit sicm Seitenlänge s. Abb.. enumerate item Zeichnen Sie die Feldvektoren im Punkt A inkl. Resultiere ein. Sie können direkt in die Skizze zeichnen. item Berechnen Sie die resultiere Feldstärke im Punkt A. item Welche Beschleunigung erfährt ein Proton im Punkt A und in welche Richtung zeigt der Beschleunigungsvektor? enumerate figureH centering tikzpicturelatex draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . noderight below A; tikzpicture figure
Solution:
enumerate item Lösungsskizze: figureH centering tikzpicturelatexscale draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . nodeabove right A; %Lösung draw thick red- --nodeabovevecE_ ; draw thick red- --noderightvecE_ -; draw thick red- -- nodeabovexshift.cmvecE_.-.; draw thick red-dashed --nodeleftvecE_ -; draw thick Green- --nodeabovexshift-.cmvecE_ -; draw thick Green-dashed .-.--nodebelowyshift-.cmvecE_ .-.; draw very thick Blu --nodeleftE_mathrmres .-.; tikzpicture figure item Die Einzelfeldstärken sind: Efracpiepsilon_fracQr^ Womit wir erhalten: E_.EsiN/Cqquad E_.EsiN/Cqquad E_.EsiN/C Die Beträge der Vektoradditionen können jeweils mit Pythagoras berechnet werden: E_sqrtE_^+E_^.EsiN/C E_ und E_ stehen wieder senkrecht aufeinander. Deshalb kann wieder Pythagoras angewet werden: E_mathrmressqrtE_^+E_^boldsymbol.EmathrmN/C item Es gilt am Punkt A: F_mathrmpq E_mathrmresm_mathrmpa Ra afrac+e E_mathrmresm_mathrmpboldsymbol.Emathrmm/s^ Die Beschleunigung zeigt in Richtung von vecE_mathrmres. enumerate
Drei Ladungen befinden sich an den Ecken eines Quadrates mit sicm Seitenlänge s. Abb.. enumerate item Zeichnen Sie die Feldvektoren im Punkt A inkl. Resultiere ein. Sie können direkt in die Skizze zeichnen. item Berechnen Sie die resultiere Feldstärke im Punkt A. item Welche Beschleunigung erfährt ein Proton im Punkt A und in welche Richtung zeigt der Beschleunigungsvektor? enumerate figureH centering tikzpicturelatex draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . noderight below A; tikzpicture figure
Solution:
enumerate item Lösungsskizze: figureH centering tikzpicturelatexscale draw dashed --------cycle; shade outer colorgray! inner colorwhite circle . node belowyshift-.cm -.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; shade outer colorgray! inner colorwhite circle . node aboveyshift.cm +.E-siC; node at bm -; node at bm +; node at bm +; fill circle . nodeabove right A; %Lösung draw thick red- --nodeabovevecE_ ; draw thick red- --noderightvecE_ -; draw thick red- -- nodeabovexshift.cmvecE_.-.; draw thick red-dashed --nodeleftvecE_ -; draw thick Green- --nodeabovexshift-.cmvecE_ -; draw thick Green-dashed .-.--nodebelowyshift-.cmvecE_ .-.; draw very thick Blu --nodeleftE_mathrmres .-.; tikzpicture figure item Die Einzelfeldstärken sind: Efracpiepsilon_fracQr^ Womit wir erhalten: E_.EsiN/Cqquad E_.EsiN/Cqquad E_.EsiN/C Die Beträge der Vektoradditionen können jeweils mit Pythagoras berechnet werden: E_sqrtE_^+E_^.EsiN/C E_ und E_ stehen wieder senkrecht aufeinander. Deshalb kann wieder Pythagoras angewet werden: E_mathrmressqrtE_^+E_^boldsymbol.EmathrmN/C item Es gilt am Punkt A: F_mathrmpq E_mathrmresm_mathrmpa Ra afrac+e E_mathrmresm_mathrmpboldsymbol.Emathrmm/s^ Die Beschleunigung zeigt in Richtung von vecE_mathrmres. enumerate
Contained in these collections:
This is the original exercise.
| Title | Creator | |||
|---|---|---|---|---|
| Drei Punktladungen (kürzer) | rb |

