Exercise
https://texercises.com/exercise/dual-space-and-inner-products-properties/
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.

Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ase VK^n and let phi:K^nrightarrow K be a functional. Then exists ! Aa_...a_nin M_times nK s.t. phivAv forall vin K^n.

Solution:
Proof. Indeed let e_...e_n be the standard basis for K^n and define a_phie_...a_nphie_n. Let vleftarrayc v_ vdots v_n arrayrightin K^n. Then phivphileftarrayc v_ vdots v_n arrayright phi v_ e_+...+v_n e_n v_phie_+...+v_nphie_n v_a_+...+v_na_n A v
Report An Error
You are on texercises.com.
reCaptcha will only work on our main-domain \(\TeX\)ercises.com!
Meta Information
\(\LaTeX\)-Code
Exercise:
Ase VK^n and let phi:K^nrightarrow K be a functional. Then exists ! Aa_...a_nin M_times nK s.t. phivAv forall vin K^n.

Solution:
Proof. Indeed let e_...e_n be the standard basis for K^n and define a_phie_...a_nphie_n. Let vleftarrayc v_ vdots v_n arrayrightin K^n. Then phivphileftarrayc v_ vdots v_n arrayright phi v_ e_+...+v_n e_n v_phie_+...+v_nphie_n v_a_+...+v_na_n A v
Contained in these collections:

Attributes & Decorations
Tags
dual space, eth, fs23, inner product, lineare algebra, proof
Content image
Difficulty
(3, default)
Points
0 (default)
Language
ENG (English)
Type
Proof
Creator rk
Decoration