Dynamik: Statik und Kinetik 48
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Kugel mit Gewicht mN liegt wie in Abb.reffig:KnickHebelmLast gezeichnet in einer Nut zwei schiefe Ebenen. Zeichnen Sie den Lag und Kräfteplan. Wie stark sind die Kräfte der Ebenen auf die Kugel? figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Solution:
% . Juli minipage.textwidth Auf die Kugel wirken die Gewichtskraft F_G der Erde die Normalkraft F_A der linken Ebene und die Normalkraft F_B der rechten Ebene. Die drei Kräfte müssen sich kompensieren. captlabelfig:KnickHebelmLast Skizze zu Aufgabe refA:KugelinNut. newline minipage hfill minipage.textwidth centering includegraphicsGrafiken/KugelinNut/KugelinNut.pdf % % . Juli Lie. Lie. minipage * &alpha sidegree qquad beta sidegree qquad gamma sidegree &fracF_Asinalpha fracF_Gsingamma Rightarrow F_A F_G fracsinalphasingamma simN fracsin sidegreesin sidegree uulinesimN &fracF_Bsinbeta fracF_Gsingamma Rightarrow F_B F_G fracsinbetasingamma simN fracsin sidegreesin sidegree uulinesimN * newpage figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Eine Kugel mit Gewicht mN liegt wie in Abb.reffig:KnickHebelmLast gezeichnet in einer Nut zwei schiefe Ebenen. Zeichnen Sie den Lag und Kräfteplan. Wie stark sind die Kräfte der Ebenen auf die Kugel? figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Solution:
% . Juli minipage.textwidth Auf die Kugel wirken die Gewichtskraft F_G der Erde die Normalkraft F_A der linken Ebene und die Normalkraft F_B der rechten Ebene. Die drei Kräfte müssen sich kompensieren. captlabelfig:KnickHebelmLast Skizze zu Aufgabe refA:KugelinNut. newline minipage hfill minipage.textwidth centering includegraphicsGrafiken/KugelinNut/KugelinNut.pdf % % . Juli Lie. Lie. minipage * &alpha sidegree qquad beta sidegree qquad gamma sidegree &fracF_Asinalpha fracF_Gsingamma Rightarrow F_A F_G fracsinalphasingamma simN fracsin sidegreesin sidegree uulinesimN &fracF_Bsinbeta fracF_Gsingamma Rightarrow F_B F_G fracsinbetasingamma simN fracsin sidegreesin sidegree uulinesimN * newpage figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Meta Information
Exercise:
Eine Kugel mit Gewicht mN liegt wie in Abb.reffig:KnickHebelmLast gezeichnet in einer Nut zwei schiefe Ebenen. Zeichnen Sie den Lag und Kräfteplan. Wie stark sind die Kräfte der Ebenen auf die Kugel? figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Solution:
% . Juli minipage.textwidth Auf die Kugel wirken die Gewichtskraft F_G der Erde die Normalkraft F_A der linken Ebene und die Normalkraft F_B der rechten Ebene. Die drei Kräfte müssen sich kompensieren. captlabelfig:KnickHebelmLast Skizze zu Aufgabe refA:KugelinNut. newline minipage hfill minipage.textwidth centering includegraphicsGrafiken/KugelinNut/KugelinNut.pdf % % . Juli Lie. Lie. minipage * &alpha sidegree qquad beta sidegree qquad gamma sidegree &fracF_Asinalpha fracF_Gsingamma Rightarrow F_A F_G fracsinalphasingamma simN fracsin sidegreesin sidegree uulinesimN &fracF_Bsinbeta fracF_Gsingamma Rightarrow F_B F_G fracsinbetasingamma simN fracsin sidegreesin sidegree uulinesimN * newpage figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Eine Kugel mit Gewicht mN liegt wie in Abb.reffig:KnickHebelmLast gezeichnet in einer Nut zwei schiefe Ebenen. Zeichnen Sie den Lag und Kräfteplan. Wie stark sind die Kräfte der Ebenen auf die Kugel? figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Solution:
% . Juli minipage.textwidth Auf die Kugel wirken die Gewichtskraft F_G der Erde die Normalkraft F_A der linken Ebene und die Normalkraft F_B der rechten Ebene. Die drei Kräfte müssen sich kompensieren. captlabelfig:KnickHebelmLast Skizze zu Aufgabe refA:KugelinNut. newline minipage hfill minipage.textwidth centering includegraphicsGrafiken/KugelinNut/KugelinNut.pdf % % . Juli Lie. Lie. minipage * &alpha sidegree qquad beta sidegree qquad gamma sidegree &fracF_Asinalpha fracF_Gsingamma Rightarrow F_A F_G fracsinalphasingamma simN fracsin sidegreesin sidegree uulinesimN &fracF_Bsinbeta fracF_Gsingamma Rightarrow F_B F_G fracsinbetasingamma simN fracsin sidegreesin sidegree uulinesimN * newpage figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KugelinNut# caption labelfig:KugelinNut figure figureH includegraphicswidthtextwidth#image_path:KnickHebelmLast# caption labelfig:KnickHebelmLast figure
Contained in these collections:
-
Dynamik: Statik und Kinetik by Lie