Dynamik: Statik und Kinetik 52
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
In Abb. reffig:Faden ist ein Körper an drei Fäden an der horizontalen Decke aufgehängt. Zeichen Sie den Lag und den Kräfteplan. Bestimmen Sie die drei Kräfte auf den Ring R die von den drei Fadenstücken ausgeübt werden. captlabelfig:Faden Ein Körper ist mit drei leichten Fäden an der Decke aufgehängt. minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. minipage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
Solution:
% . . Lie. minipage.textwidth In Abb. reffig:Faden sind der Lag und Kräfteplan dargestellt. Die Fäden bilden ein pythagoräisches Zahlentripel d.h. gamma sidegree alpha arccos/ .sidegree und beta arccos/ .sidegree * &F_ m_ g .sikg .sim/s^ uuline.siN &F_ F_cosalpha m_g / .. uuline.siN &F_ F_cosbeta m_g / .. uuline.siN &textTest: F_^+F_^ F_^ checkmark * Variante: massstäbliche Konstruktion minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. captlabelfig:Faden Lag und Kräfteplan minipage newpage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
In Abb. reffig:Faden ist ein Körper an drei Fäden an der horizontalen Decke aufgehängt. Zeichen Sie den Lag und den Kräfteplan. Bestimmen Sie die drei Kräfte auf den Ring R die von den drei Fadenstücken ausgeübt werden. captlabelfig:Faden Ein Körper ist mit drei leichten Fäden an der Decke aufgehängt. minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. minipage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
Solution:
% . . Lie. minipage.textwidth In Abb. reffig:Faden sind der Lag und Kräfteplan dargestellt. Die Fäden bilden ein pythagoräisches Zahlentripel d.h. gamma sidegree alpha arccos/ .sidegree und beta arccos/ .sidegree * &F_ m_ g .sikg .sim/s^ uuline.siN &F_ F_cosalpha m_g / .. uuline.siN &F_ F_cosbeta m_g / .. uuline.siN &textTest: F_^+F_^ F_^ checkmark * Variante: massstäbliche Konstruktion minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. captlabelfig:Faden Lag und Kräfteplan minipage newpage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
Meta Information
Exercise:
In Abb. reffig:Faden ist ein Körper an drei Fäden an der horizontalen Decke aufgehängt. Zeichen Sie den Lag und den Kräfteplan. Bestimmen Sie die drei Kräfte auf den Ring R die von den drei Fadenstücken ausgeübt werden. captlabelfig:Faden Ein Körper ist mit drei leichten Fäden an der Decke aufgehängt. minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. minipage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
Solution:
% . . Lie. minipage.textwidth In Abb. reffig:Faden sind der Lag und Kräfteplan dargestellt. Die Fäden bilden ein pythagoräisches Zahlentripel d.h. gamma sidegree alpha arccos/ .sidegree und beta arccos/ .sidegree * &F_ m_ g .sikg .sim/s^ uuline.siN &F_ F_cosalpha m_g / .. uuline.siN &F_ F_cosbeta m_g / .. uuline.siN &textTest: F_^+F_^ F_^ checkmark * Variante: massstäbliche Konstruktion minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. captlabelfig:Faden Lag und Kräfteplan minipage newpage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
In Abb. reffig:Faden ist ein Körper an drei Fäden an der horizontalen Decke aufgehängt. Zeichen Sie den Lag und den Kräfteplan. Bestimmen Sie die drei Kräfte auf den Ring R die von den drei Fadenstücken ausgeübt werden. captlabelfig:Faden Ein Körper ist mit drei leichten Fäden an der Decke aufgehängt. minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. minipage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
Solution:
% . . Lie. minipage.textwidth In Abb. reffig:Faden sind der Lag und Kräfteplan dargestellt. Die Fäden bilden ein pythagoräisches Zahlentripel d.h. gamma sidegree alpha arccos/ .sidegree und beta arccos/ .sidegree * &F_ m_ g .sikg .sim/s^ uuline.siN &F_ F_cosalpha m_g / .. uuline.siN &F_ F_cosbeta m_g / .. uuline.siN &textTest: F_^+F_^ F_^ checkmark * Variante: massstäbliche Konstruktion minipage hfill minipage.textwidth includegraphicsscale.Grafiken/Faden/Faden.pdf % . Dez. Lie. captlabelfig:Faden Lag und Kräfteplan minipage newpage figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure figureH includegraphicswidthtextwidth#image_path:Faden# caption labelfig:Faden figure
Contained in these collections:
-
Dynamik: Statik und Kinetik by Lie