Einseitig geschlossenes Rohr
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Länge \(\ell\) / Frequenz \(f\) / Wellenlänge \(\lambda\) /
The following formulas must be used to solve the exercise:
\(\lambda = \frac{\ell}{4} \cdot (2k+1) \quad \) \(c = \lambda \cdot f \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bestimme die drei niedrigsten Eigenfrequenzen eines l langen Rohres das ein offenes und ein geschlossenes Ende besitzt.
Solution:
Es gibt grundsätzlich zwei Möglichkeiten die Bedingung für zwei ungleiche Enden glqq einseitig eingespanntgrqq zu formulieren entweder über tcbhighmathhighlight mathlambda_n fracelln qquad n in dots oder tcbhighmathhighlight mathlambda_n fracelln+ qquad n in dots wobei natürlich beide Varianten auf die gleichen Wellenlängen führen. Mit diesen beiden Varianten folgt für die Eigenfrequenzen al f_n fracclambda_n fracncell qquad n in dots resp. al f_n fracclambda_n fracn+cell qquad n in dots Die drei niedrigsten Frequenzen sind damit: f_ feTTT f_ fdTTT f_ ffTTT Weil es sich um ein Rohr handelt und das Ausbreitungsmedium die Luft ist muss als Geschwindigkeit die Schallgeschwindigkeit in Luft c verwet werden.
Bestimme die drei niedrigsten Eigenfrequenzen eines l langen Rohres das ein offenes und ein geschlossenes Ende besitzt.
Solution:
Es gibt grundsätzlich zwei Möglichkeiten die Bedingung für zwei ungleiche Enden glqq einseitig eingespanntgrqq zu formulieren entweder über tcbhighmathhighlight mathlambda_n fracelln qquad n in dots oder tcbhighmathhighlight mathlambda_n fracelln+ qquad n in dots wobei natürlich beide Varianten auf die gleichen Wellenlängen führen. Mit diesen beiden Varianten folgt für die Eigenfrequenzen al f_n fracclambda_n fracncell qquad n in dots resp. al f_n fracclambda_n fracn+cell qquad n in dots Die drei niedrigsten Frequenzen sind damit: f_ feTTT f_ fdTTT f_ ffTTT Weil es sich um ein Rohr handelt und das Ausbreitungsmedium die Luft ist muss als Geschwindigkeit die Schallgeschwindigkeit in Luft c verwet werden.
Meta Information
Exercise:
Bestimme die drei niedrigsten Eigenfrequenzen eines l langen Rohres das ein offenes und ein geschlossenes Ende besitzt.
Solution:
Es gibt grundsätzlich zwei Möglichkeiten die Bedingung für zwei ungleiche Enden glqq einseitig eingespanntgrqq zu formulieren entweder über tcbhighmathhighlight mathlambda_n fracelln qquad n in dots oder tcbhighmathhighlight mathlambda_n fracelln+ qquad n in dots wobei natürlich beide Varianten auf die gleichen Wellenlängen führen. Mit diesen beiden Varianten folgt für die Eigenfrequenzen al f_n fracclambda_n fracncell qquad n in dots resp. al f_n fracclambda_n fracn+cell qquad n in dots Die drei niedrigsten Frequenzen sind damit: f_ feTTT f_ fdTTT f_ ffTTT Weil es sich um ein Rohr handelt und das Ausbreitungsmedium die Luft ist muss als Geschwindigkeit die Schallgeschwindigkeit in Luft c verwet werden.
Bestimme die drei niedrigsten Eigenfrequenzen eines l langen Rohres das ein offenes und ein geschlossenes Ende besitzt.
Solution:
Es gibt grundsätzlich zwei Möglichkeiten die Bedingung für zwei ungleiche Enden glqq einseitig eingespanntgrqq zu formulieren entweder über tcbhighmathhighlight mathlambda_n fracelln qquad n in dots oder tcbhighmathhighlight mathlambda_n fracelln+ qquad n in dots wobei natürlich beide Varianten auf die gleichen Wellenlängen führen. Mit diesen beiden Varianten folgt für die Eigenfrequenzen al f_n fracclambda_n fracncell qquad n in dots resp. al f_n fracclambda_n fracn+cell qquad n in dots Die drei niedrigsten Frequenzen sind damit: f_ feTTT f_ fdTTT f_ ffTTT Weil es sich um ein Rohr handelt und das Ausbreitungsmedium die Luft ist muss als Geschwindigkeit die Schallgeschwindigkeit in Luft c verwet werden.
Contained in these collections:
-
Stehende Wellen by aej
-
Frequenz von stehenden Wellen - einseitig by TeXercises
-
Akustik by pw
Asked Quantity:
Frequenz \(f\)
in
Hertz \(\rm Hz\)
Physical Quantity
Unit