Elektrodynamik: Kondensatorentladung 2
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Wird die Taste T in Abb.reffig:KondAufEntladSchalt kurz gedrückt so variiert die Spannung über dem Kondensator wie in Abb.reffig:KondAufEntladSpann. a Erklären Sie den Verlauf. b Stellen Sie alle Gleichungen zusammen um zu jedem Zeitpunkt t geqslant diese Spannung auszurechnen. Sie müssen keine Schlussformel erstellen. quad figureH includegraphicswidthtextwidth#image_path:KondAufEntladSchalt# caption labelfig:KondAufEntladSchalt figure figureH includegraphicswidthtextwidth#image_path:KondAufEntladSpann# caption labelfig:KondAufEntladSpann figure
Solution:
% . Mai Lie. a Der Kondensator lädt sich asymptotisch von Null Richtung Endspannung auf bis die Taste losgelassen wird. Dann entlädt er sich exponentiell gegen Null. Auf- und Entladung erfolgen mit verschiedenen Zeitkonstanten weil die Widerstände verschieden sind. ed t &textb U_ - R_ i_ - fracq_C_ land U_ - R_i_-R_i_ land i_ i_+i_ land i_ fracdq_dt textquad Aufladung leqslant tleqslant T &textquad Entladung: quad u_bt u_aT exp-t-T/R_C_ quad t geqslant T ed newpage
Wird die Taste T in Abb.reffig:KondAufEntladSchalt kurz gedrückt so variiert die Spannung über dem Kondensator wie in Abb.reffig:KondAufEntladSpann. a Erklären Sie den Verlauf. b Stellen Sie alle Gleichungen zusammen um zu jedem Zeitpunkt t geqslant diese Spannung auszurechnen. Sie müssen keine Schlussformel erstellen. quad figureH includegraphicswidthtextwidth#image_path:KondAufEntladSchalt# caption labelfig:KondAufEntladSchalt figure figureH includegraphicswidthtextwidth#image_path:KondAufEntladSpann# caption labelfig:KondAufEntladSpann figure
Solution:
% . Mai Lie. a Der Kondensator lädt sich asymptotisch von Null Richtung Endspannung auf bis die Taste losgelassen wird. Dann entlädt er sich exponentiell gegen Null. Auf- und Entladung erfolgen mit verschiedenen Zeitkonstanten weil die Widerstände verschieden sind. ed t &textb U_ - R_ i_ - fracq_C_ land U_ - R_i_-R_i_ land i_ i_+i_ land i_ fracdq_dt textquad Aufladung leqslant tleqslant T &textquad Entladung: quad u_bt u_aT exp-t-T/R_C_ quad t geqslant T ed newpage
Meta Information
Exercise:
Wird die Taste T in Abb.reffig:KondAufEntladSchalt kurz gedrückt so variiert die Spannung über dem Kondensator wie in Abb.reffig:KondAufEntladSpann. a Erklären Sie den Verlauf. b Stellen Sie alle Gleichungen zusammen um zu jedem Zeitpunkt t geqslant diese Spannung auszurechnen. Sie müssen keine Schlussformel erstellen. quad figureH includegraphicswidthtextwidth#image_path:KondAufEntladSchalt# caption labelfig:KondAufEntladSchalt figure figureH includegraphicswidthtextwidth#image_path:KondAufEntladSpann# caption labelfig:KondAufEntladSpann figure
Solution:
% . Mai Lie. a Der Kondensator lädt sich asymptotisch von Null Richtung Endspannung auf bis die Taste losgelassen wird. Dann entlädt er sich exponentiell gegen Null. Auf- und Entladung erfolgen mit verschiedenen Zeitkonstanten weil die Widerstände verschieden sind. ed t &textb U_ - R_ i_ - fracq_C_ land U_ - R_i_-R_i_ land i_ i_+i_ land i_ fracdq_dt textquad Aufladung leqslant tleqslant T &textquad Entladung: quad u_bt u_aT exp-t-T/R_C_ quad t geqslant T ed newpage
Wird die Taste T in Abb.reffig:KondAufEntladSchalt kurz gedrückt so variiert die Spannung über dem Kondensator wie in Abb.reffig:KondAufEntladSpann. a Erklären Sie den Verlauf. b Stellen Sie alle Gleichungen zusammen um zu jedem Zeitpunkt t geqslant diese Spannung auszurechnen. Sie müssen keine Schlussformel erstellen. quad figureH includegraphicswidthtextwidth#image_path:KondAufEntladSchalt# caption labelfig:KondAufEntladSchalt figure figureH includegraphicswidthtextwidth#image_path:KondAufEntladSpann# caption labelfig:KondAufEntladSpann figure
Solution:
% . Mai Lie. a Der Kondensator lädt sich asymptotisch von Null Richtung Endspannung auf bis die Taste losgelassen wird. Dann entlädt er sich exponentiell gegen Null. Auf- und Entladung erfolgen mit verschiedenen Zeitkonstanten weil die Widerstände verschieden sind. ed t &textb U_ - R_ i_ - fracq_C_ land U_ - R_i_-R_i_ land i_ i_+i_ land i_ fracdq_dt textquad Aufladung leqslant tleqslant T &textquad Entladung: quad u_bt u_aT exp-t-T/R_C_ quad t geqslant T ed newpage
Contained in these collections: