Energie für Sputnik 1
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Kraft \(F\) / Arbeit \(W\) / Geschwindigkeit \(v\) / Strecke \(s\) / Radius \(r\) / Winkelgeschwindigkeit / Kreisfrequenz \(\omega\) /
The following formulas must be used to solve the exercise:
\(W = \int F(s)\,\text{d}s \quad \) \(F = G \dfrac{m_1m_2}{r^2} \quad \) \(F = m\dfrac{v^2}{r} \quad \) \(F = mr\omega^2 \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Der erste künstliche Erdsatellit war der sowjetische Sputnik . Er hatte mO Masse und erreichte im Oktober eine annähernd kreisförmige Umlaufbahn in rund hO Höhe über der Erdoberfläche. Berechne die mechanische Energie welche die Trägerrakete R- dem Satelliten mindestens zuführen musste um ihn auf diese Umlaufbahn zu bringen.
Solution:
NewQtyM.ekg NewQtyR.em SolQtywsqrtncGn*MX/RX+hX^radps SolQtyT*pi/wXs SolQtyThTX/h SolQtyTmTX/min Die Umlaufzeit des Satelliten ergibt sich aus sscFZ &mustbe sscFG mromega^ fracGMmr^ omega sqrtfracGMr^ sqrtfracncG MR+h^ w T fracpiomega pi sqrtfracr^GM fracpiw T approx TmP ThP Die Energie welche dem Satelliten zugeführt werden musste hat zwei Anteile: Kinetische Energie und potentielle Energie. Die potentielle Energie ist: SolQtyEpncGn*MX*mX*/RX-/RX+hXJ sscEpot _R^R+hfracGMmr^ mboxdr GMm leftfracR-fracR+hright Ep Die kinetische Energie des Satelliten ist: SolQtyEk.*mX*RX+hX^*wX^J sscEkin frac mv^ frac mr^omega^ frac m R+h^ Ek Total müssen dem Satelliten also E sscEpot + sscEkin Ep + Ek E approx ES durch die Trägerrakete zugeführt werden.
Der erste künstliche Erdsatellit war der sowjetische Sputnik . Er hatte mO Masse und erreichte im Oktober eine annähernd kreisförmige Umlaufbahn in rund hO Höhe über der Erdoberfläche. Berechne die mechanische Energie welche die Trägerrakete R- dem Satelliten mindestens zuführen musste um ihn auf diese Umlaufbahn zu bringen.
Solution:
NewQtyM.ekg NewQtyR.em SolQtywsqrtncGn*MX/RX+hX^radps SolQtyT*pi/wXs SolQtyThTX/h SolQtyTmTX/min Die Umlaufzeit des Satelliten ergibt sich aus sscFZ &mustbe sscFG mromega^ fracGMmr^ omega sqrtfracGMr^ sqrtfracncG MR+h^ w T fracpiomega pi sqrtfracr^GM fracpiw T approx TmP ThP Die Energie welche dem Satelliten zugeführt werden musste hat zwei Anteile: Kinetische Energie und potentielle Energie. Die potentielle Energie ist: SolQtyEpncGn*MX*mX*/RX-/RX+hXJ sscEpot _R^R+hfracGMmr^ mboxdr GMm leftfracR-fracR+hright Ep Die kinetische Energie des Satelliten ist: SolQtyEk.*mX*RX+hX^*wX^J sscEkin frac mv^ frac mr^omega^ frac m R+h^ Ek Total müssen dem Satelliten also E sscEpot + sscEkin Ep + Ek E approx ES durch die Trägerrakete zugeführt werden.
Meta Information
Exercise:
Der erste künstliche Erdsatellit war der sowjetische Sputnik . Er hatte mO Masse und erreichte im Oktober eine annähernd kreisförmige Umlaufbahn in rund hO Höhe über der Erdoberfläche. Berechne die mechanische Energie welche die Trägerrakete R- dem Satelliten mindestens zuführen musste um ihn auf diese Umlaufbahn zu bringen.
Solution:
NewQtyM.ekg NewQtyR.em SolQtywsqrtncGn*MX/RX+hX^radps SolQtyT*pi/wXs SolQtyThTX/h SolQtyTmTX/min Die Umlaufzeit des Satelliten ergibt sich aus sscFZ &mustbe sscFG mromega^ fracGMmr^ omega sqrtfracGMr^ sqrtfracncG MR+h^ w T fracpiomega pi sqrtfracr^GM fracpiw T approx TmP ThP Die Energie welche dem Satelliten zugeführt werden musste hat zwei Anteile: Kinetische Energie und potentielle Energie. Die potentielle Energie ist: SolQtyEpncGn*MX*mX*/RX-/RX+hXJ sscEpot _R^R+hfracGMmr^ mboxdr GMm leftfracR-fracR+hright Ep Die kinetische Energie des Satelliten ist: SolQtyEk.*mX*RX+hX^*wX^J sscEkin frac mv^ frac mr^omega^ frac m R+h^ Ek Total müssen dem Satelliten also E sscEpot + sscEkin Ep + Ek E approx ES durch die Trägerrakete zugeführt werden.
Der erste künstliche Erdsatellit war der sowjetische Sputnik . Er hatte mO Masse und erreichte im Oktober eine annähernd kreisförmige Umlaufbahn in rund hO Höhe über der Erdoberfläche. Berechne die mechanische Energie welche die Trägerrakete R- dem Satelliten mindestens zuführen musste um ihn auf diese Umlaufbahn zu bringen.
Solution:
NewQtyM.ekg NewQtyR.em SolQtywsqrtncGn*MX/RX+hX^radps SolQtyT*pi/wXs SolQtyThTX/h SolQtyTmTX/min Die Umlaufzeit des Satelliten ergibt sich aus sscFZ &mustbe sscFG mromega^ fracGMmr^ omega sqrtfracGMr^ sqrtfracncG MR+h^ w T fracpiomega pi sqrtfracr^GM fracpiw T approx TmP ThP Die Energie welche dem Satelliten zugeführt werden musste hat zwei Anteile: Kinetische Energie und potentielle Energie. Die potentielle Energie ist: SolQtyEpncGn*MX*mX*/RX-/RX+hXJ sscEpot _R^R+hfracGMmr^ mboxdr GMm leftfracR-fracR+hright Ep Die kinetische Energie des Satelliten ist: SolQtyEk.*mX*RX+hX^*wX^J sscEkin frac mv^ frac mr^omega^ frac m R+h^ Ek Total müssen dem Satelliten also E sscEpot + sscEkin Ep + Ek E approx ES durch die Trägerrakete zugeführt werden.
Contained in these collections:
-
Arbeitsintegral und Gravitationsgesetz by TeXercises
Asked Quantity:
Energie \(E\)
in
Joule \(\rm J\)
Physical Quantity
Energie \(E\)
gespeicherte Arbeit
Unit
Joule (\(\rm J\))
Base?
SI?
Metric?
Coherent?
Imperial?
\(\rm1\,J\): Herzschlag
\(\rm1\,J\): Schokolade einen Meter anheben