Erde als Kugelkondensator
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Die Erde kann als riesiger Kugelkondensator aufgefasst werden: Die eine glqq Plattegrqq wird durch die Oberfläche gebildet die andere durch die Stratosphäre in hO Höhe. Der Kondensator an dem eine mittlere Spannung von UO anliegt wird durch Gewittertätigkeit aufgeladen. Berechne die elektrische Ladung.
Solution:
Geg h hO h U UO U sscri riO ri quad textErde % GesLadungQ siC % Der Innenradius dieses Erdkondensators entspricht gerade dem Erdradius. Der Aussenradius ist SolQtyrasscri + hriX+hXm al sscra raF ri + h ra. Die Kapazität ist folglich SolQtyC pi varepsilon_ fracsscri qtyraFh*pi*ncepsX*riX*raX/raX-riXF al C pi varepsilon_ fracsscri sscrasscra - sscri pi varepsilon_ fracsscri qtyraFraF - sscri CF pi nceps fracri rara - ri C. % Die Ladungsmenge bei der angegebenen Spannung ist dann SolQtyQfrac pi varepsilon_U sscri qtyraFhCX*UXC al Q CU CF U QF C U Q approx QP. % Q QF &approx QP
Die Erde kann als riesiger Kugelkondensator aufgefasst werden: Die eine glqq Plattegrqq wird durch die Oberfläche gebildet die andere durch die Stratosphäre in hO Höhe. Der Kondensator an dem eine mittlere Spannung von UO anliegt wird durch Gewittertätigkeit aufgeladen. Berechne die elektrische Ladung.
Solution:
Geg h hO h U UO U sscri riO ri quad textErde % GesLadungQ siC % Der Innenradius dieses Erdkondensators entspricht gerade dem Erdradius. Der Aussenradius ist SolQtyrasscri + hriX+hXm al sscra raF ri + h ra. Die Kapazität ist folglich SolQtyC pi varepsilon_ fracsscri qtyraFh*pi*ncepsX*riX*raX/raX-riXF al C pi varepsilon_ fracsscri sscrasscra - sscri pi varepsilon_ fracsscri qtyraFraF - sscri CF pi nceps fracri rara - ri C. % Die Ladungsmenge bei der angegebenen Spannung ist dann SolQtyQfrac pi varepsilon_U sscri qtyraFhCX*UXC al Q CU CF U QF C U Q approx QP. % Q QF &approx QP
Meta Information
Exercise:
Die Erde kann als riesiger Kugelkondensator aufgefasst werden: Die eine glqq Plattegrqq wird durch die Oberfläche gebildet die andere durch die Stratosphäre in hO Höhe. Der Kondensator an dem eine mittlere Spannung von UO anliegt wird durch Gewittertätigkeit aufgeladen. Berechne die elektrische Ladung.
Solution:
Geg h hO h U UO U sscri riO ri quad textErde % GesLadungQ siC % Der Innenradius dieses Erdkondensators entspricht gerade dem Erdradius. Der Aussenradius ist SolQtyrasscri + hriX+hXm al sscra raF ri + h ra. Die Kapazität ist folglich SolQtyC pi varepsilon_ fracsscri qtyraFh*pi*ncepsX*riX*raX/raX-riXF al C pi varepsilon_ fracsscri sscrasscra - sscri pi varepsilon_ fracsscri qtyraFraF - sscri CF pi nceps fracri rara - ri C. % Die Ladungsmenge bei der angegebenen Spannung ist dann SolQtyQfrac pi varepsilon_U sscri qtyraFhCX*UXC al Q CU CF U QF C U Q approx QP. % Q QF &approx QP
Die Erde kann als riesiger Kugelkondensator aufgefasst werden: Die eine glqq Plattegrqq wird durch die Oberfläche gebildet die andere durch die Stratosphäre in hO Höhe. Der Kondensator an dem eine mittlere Spannung von UO anliegt wird durch Gewittertätigkeit aufgeladen. Berechne die elektrische Ladung.
Solution:
Geg h hO h U UO U sscri riO ri quad textErde % GesLadungQ siC % Der Innenradius dieses Erdkondensators entspricht gerade dem Erdradius. Der Aussenradius ist SolQtyrasscri + hriX+hXm al sscra raF ri + h ra. Die Kapazität ist folglich SolQtyC pi varepsilon_ fracsscri qtyraFh*pi*ncepsX*riX*raX/raX-riXF al C pi varepsilon_ fracsscri sscrasscra - sscri pi varepsilon_ fracsscri qtyraFraF - sscri CF pi nceps fracri rara - ri C. % Die Ladungsmenge bei der angegebenen Spannung ist dann SolQtyQfrac pi varepsilon_U sscri qtyraFhCX*UXC al Q CU CF U QF C U Q approx QP. % Q QF &approx QP
Contained in these collections:
-
Elektrische Kapazität by pw
-
Elektrostatik: Kondensatoren by Lie