Erste Charakterisierung von mehrdimensionaler Riemann-Integrierbarkeit
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Sei f eine beschränkte reellwertige Funktion auf einem abgeschlossenen Quader Qsubseteq mathbbR^n. Die Funktion f ist genau dann Riemann-egrierbar wenn zu jedem epsilon eine Zerlegung zeta von Q mit Ofzeta-Ufzeta epsilon existiert.
Solution:
Beweis. Angenommen f ist R-bar. Ist epsilon so existieren per Definition des unteren Integrals eine Zerlegung underlinezetaf-fracepsilon Ufunderlinezeta und analog eine Zerlegung overlinezeta von Q mit Ofoverlinezeta overlineIf+fracepsilon. Nach R-Intbarkeit von f gilt underlineIfoverlineIf und nach Lemma . hat die gemeinsame Verfeinerung zeta von underlinezeta und overlinezeta die gewünschte Eigenschaft. Die Umkehrung folgt direkt aus der Tatsache dass für jede Zerlegung zeta von Q die Ungleichung overlineIf-underlineIf leq Ofzeta-Ufzeta gilt.
Sei f eine beschränkte reellwertige Funktion auf einem abgeschlossenen Quader Qsubseteq mathbbR^n. Die Funktion f ist genau dann Riemann-egrierbar wenn zu jedem epsilon eine Zerlegung zeta von Q mit Ofzeta-Ufzeta epsilon existiert.
Solution:
Beweis. Angenommen f ist R-bar. Ist epsilon so existieren per Definition des unteren Integrals eine Zerlegung underlinezetaf-fracepsilon Ufunderlinezeta und analog eine Zerlegung overlinezeta von Q mit Ofoverlinezeta overlineIf+fracepsilon. Nach R-Intbarkeit von f gilt underlineIfoverlineIf und nach Lemma . hat die gemeinsame Verfeinerung zeta von underlinezeta und overlinezeta die gewünschte Eigenschaft. Die Umkehrung folgt direkt aus der Tatsache dass für jede Zerlegung zeta von Q die Ungleichung overlineIf-underlineIf leq Ofzeta-Ufzeta gilt.
Meta Information
Exercise:
Sei f eine beschränkte reellwertige Funktion auf einem abgeschlossenen Quader Qsubseteq mathbbR^n. Die Funktion f ist genau dann Riemann-egrierbar wenn zu jedem epsilon eine Zerlegung zeta von Q mit Ofzeta-Ufzeta epsilon existiert.
Solution:
Beweis. Angenommen f ist R-bar. Ist epsilon so existieren per Definition des unteren Integrals eine Zerlegung underlinezetaf-fracepsilon Ufunderlinezeta und analog eine Zerlegung overlinezeta von Q mit Ofoverlinezeta overlineIf+fracepsilon. Nach R-Intbarkeit von f gilt underlineIfoverlineIf und nach Lemma . hat die gemeinsame Verfeinerung zeta von underlinezeta und overlinezeta die gewünschte Eigenschaft. Die Umkehrung folgt direkt aus der Tatsache dass für jede Zerlegung zeta von Q die Ungleichung overlineIf-underlineIf leq Ofzeta-Ufzeta gilt.
Sei f eine beschränkte reellwertige Funktion auf einem abgeschlossenen Quader Qsubseteq mathbbR^n. Die Funktion f ist genau dann Riemann-egrierbar wenn zu jedem epsilon eine Zerlegung zeta von Q mit Ofzeta-Ufzeta epsilon existiert.
Solution:
Beweis. Angenommen f ist R-bar. Ist epsilon so existieren per Definition des unteren Integrals eine Zerlegung underlinezetaf-fracepsilon Ufunderlinezeta und analog eine Zerlegung overlinezeta von Q mit Ofoverlinezeta overlineIf+fracepsilon. Nach R-Intbarkeit von f gilt underlineIfoverlineIf und nach Lemma . hat die gemeinsame Verfeinerung zeta von underlinezeta und overlinezeta die gewünschte Eigenschaft. Die Umkehrung folgt direkt aus der Tatsache dass für jede Zerlegung zeta von Q die Ungleichung overlineIf-underlineIf leq Ofzeta-Ufzeta gilt.
Contained in these collections: