Fallgesetze: Vertikaler Wurf 19
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Drücken Sie die Bahngleichung des vertikalen Wurfs durch die Koordinaten t_S y_S des Scheitels aus statt durch die Anfangskoordinate y_ und die Anfangsgeschwindigkeit v_y. Wie hängt diese Form der Bahngleichung mit der üblichen zusammen?
Solution:
% . Oktober Lie. * y -tfracgleft t-t_S right^ + y_S * Wird für t der Zeitpunkt t_S eingesetzt so erhalten wir für y die Scheitelkoordinate y_S. Der Vorfaktor tfrac g ist notwig weil die ausmultiplizierte Bahngleichung -tfracgt^ enthalten muss: * &y -tfracgleft t-t_S right^ + y_S -tfrac g t^ + gt_St - tfracgt_S^+y_S quad leftrightarrow quad y y_ + v_yt -tfracgt^ &quad Rightarrow v_y g t_S qquad y_ y_S - tfrac g t_S^ * newpage
Drücken Sie die Bahngleichung des vertikalen Wurfs durch die Koordinaten t_S y_S des Scheitels aus statt durch die Anfangskoordinate y_ und die Anfangsgeschwindigkeit v_y. Wie hängt diese Form der Bahngleichung mit der üblichen zusammen?
Solution:
% . Oktober Lie. * y -tfracgleft t-t_S right^ + y_S * Wird für t der Zeitpunkt t_S eingesetzt so erhalten wir für y die Scheitelkoordinate y_S. Der Vorfaktor tfrac g ist notwig weil die ausmultiplizierte Bahngleichung -tfracgt^ enthalten muss: * &y -tfracgleft t-t_S right^ + y_S -tfrac g t^ + gt_St - tfracgt_S^+y_S quad leftrightarrow quad y y_ + v_yt -tfracgt^ &quad Rightarrow v_y g t_S qquad y_ y_S - tfrac g t_S^ * newpage
Meta Information
Exercise:
Drücken Sie die Bahngleichung des vertikalen Wurfs durch die Koordinaten t_S y_S des Scheitels aus statt durch die Anfangskoordinate y_ und die Anfangsgeschwindigkeit v_y. Wie hängt diese Form der Bahngleichung mit der üblichen zusammen?
Solution:
% . Oktober Lie. * y -tfracgleft t-t_S right^ + y_S * Wird für t der Zeitpunkt t_S eingesetzt so erhalten wir für y die Scheitelkoordinate y_S. Der Vorfaktor tfrac g ist notwig weil die ausmultiplizierte Bahngleichung -tfracgt^ enthalten muss: * &y -tfracgleft t-t_S right^ + y_S -tfrac g t^ + gt_St - tfracgt_S^+y_S quad leftrightarrow quad y y_ + v_yt -tfracgt^ &quad Rightarrow v_y g t_S qquad y_ y_S - tfrac g t_S^ * newpage
Drücken Sie die Bahngleichung des vertikalen Wurfs durch die Koordinaten t_S y_S des Scheitels aus statt durch die Anfangskoordinate y_ und die Anfangsgeschwindigkeit v_y. Wie hängt diese Form der Bahngleichung mit der üblichen zusammen?
Solution:
% . Oktober Lie. * y -tfracgleft t-t_S right^ + y_S * Wird für t der Zeitpunkt t_S eingesetzt so erhalten wir für y die Scheitelkoordinate y_S. Der Vorfaktor tfrac g ist notwig weil die ausmultiplizierte Bahngleichung -tfracgt^ enthalten muss: * &y -tfracgleft t-t_S right^ + y_S -tfrac g t^ + gt_St - tfracgt_S^+y_S quad leftrightarrow quad y y_ + v_yt -tfracgt^ &quad Rightarrow v_y g t_S qquad y_ y_S - tfrac g t_S^ * newpage
Contained in these collections:
-
Fallgesetze: Vertikaler Wurf by Lie