Flüssigkeit im U-Rohr
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
In einem U-Rohr mit einer Querschnittsfläche von .centimetersquared werden g Quecksilber kilogrampercubicmeter um cm ausgelenkt. abcliste abc Zeige dass es sich hierbei um eine harmonische Schwingung handelt. abc Berechne die Schwingungsdauer. abc Berechne die maximale Geschwindigkeit. abc Berechne die maximale Beschleunigung. abcliste center tikzpicturescale. drawcolorgreen!!black dashed --- noderight Ruhelage; filldrawfillblue!!white drawblue ---- --- arc -:: -- ---- to controls+:. and +:. ------ arc :-: ------ -- - to controls+:. and +:. - ---; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; drawcolorgreen!!black |-latex .--. nodebelow y; filldrawcoloryellow!!white to controls+:. and +:. -- to controls+:-. and +:-. ; node at A; drawthick ----; drawthick ----; drawthick --; drawthick --; drawthick arc :-:; drawthick arc :-:; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; tikzpicture center
Solution:
abcliste abc Die Physik der Aufgabe ist von der Form F-Arho g y; also handelt es sich um eine harmonische Schwingung Fpropto y. abc Die Schwingungsdauer ist: TpisqrtfracmK pisqrtfracmArho g pisqrtfrac.kg .metersquared kilogrampercubicmeter .newtonperkilogram .s abc Die Geschwindigkeitsfunktion einer harmonisch schwingen Masse kann immer durch vt y_omegasinomega t repräsentiert werden. Diese Funktion ist maximal wenn der Sinus-Term eins wird. Also ist v_textrmmaxy_omega .meterpersecond. abc Genau gleich wie man die maximale Geschwindigkeit findet findet man die maximale Beschleunigung: a_textrmmaxy_omega^ .meterpersecondsquared abcliste
In einem U-Rohr mit einer Querschnittsfläche von .centimetersquared werden g Quecksilber kilogrampercubicmeter um cm ausgelenkt. abcliste abc Zeige dass es sich hierbei um eine harmonische Schwingung handelt. abc Berechne die Schwingungsdauer. abc Berechne die maximale Geschwindigkeit. abc Berechne die maximale Beschleunigung. abcliste center tikzpicturescale. drawcolorgreen!!black dashed --- noderight Ruhelage; filldrawfillblue!!white drawblue ---- --- arc -:: -- ---- to controls+:. and +:. ------ arc :-: ------ -- - to controls+:. and +:. - ---; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; drawcolorgreen!!black |-latex .--. nodebelow y; filldrawcoloryellow!!white to controls+:. and +:. -- to controls+:-. and +:-. ; node at A; drawthick ----; drawthick ----; drawthick --; drawthick --; drawthick arc :-:; drawthick arc :-:; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; tikzpicture center
Solution:
abcliste abc Die Physik der Aufgabe ist von der Form F-Arho g y; also handelt es sich um eine harmonische Schwingung Fpropto y. abc Die Schwingungsdauer ist: TpisqrtfracmK pisqrtfracmArho g pisqrtfrac.kg .metersquared kilogrampercubicmeter .newtonperkilogram .s abc Die Geschwindigkeitsfunktion einer harmonisch schwingen Masse kann immer durch vt y_omegasinomega t repräsentiert werden. Diese Funktion ist maximal wenn der Sinus-Term eins wird. Also ist v_textrmmaxy_omega .meterpersecond. abc Genau gleich wie man die maximale Geschwindigkeit findet findet man die maximale Beschleunigung: a_textrmmaxy_omega^ .meterpersecondsquared abcliste
Meta Information
Exercise:
In einem U-Rohr mit einer Querschnittsfläche von .centimetersquared werden g Quecksilber kilogrampercubicmeter um cm ausgelenkt. abcliste abc Zeige dass es sich hierbei um eine harmonische Schwingung handelt. abc Berechne die Schwingungsdauer. abc Berechne die maximale Geschwindigkeit. abc Berechne die maximale Beschleunigung. abcliste center tikzpicturescale. drawcolorgreen!!black dashed --- noderight Ruhelage; filldrawfillblue!!white drawblue ---- --- arc -:: -- ---- to controls+:. and +:. ------ arc :-: ------ -- - to controls+:. and +:. - ---; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; drawcolorgreen!!black |-latex .--. nodebelow y; filldrawcoloryellow!!white to controls+:. and +:. -- to controls+:-. and +:-. ; node at A; drawthick ----; drawthick ----; drawthick --; drawthick --; drawthick arc :-:; drawthick arc :-:; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; tikzpicture center
Solution:
abcliste abc Die Physik der Aufgabe ist von der Form F-Arho g y; also handelt es sich um eine harmonische Schwingung Fpropto y. abc Die Schwingungsdauer ist: TpisqrtfracmK pisqrtfracmArho g pisqrtfrac.kg .metersquared kilogrampercubicmeter .newtonperkilogram .s abc Die Geschwindigkeitsfunktion einer harmonisch schwingen Masse kann immer durch vt y_omegasinomega t repräsentiert werden. Diese Funktion ist maximal wenn der Sinus-Term eins wird. Also ist v_textrmmaxy_omega .meterpersecond. abc Genau gleich wie man die maximale Geschwindigkeit findet findet man die maximale Beschleunigung: a_textrmmaxy_omega^ .meterpersecondsquared abcliste
In einem U-Rohr mit einer Querschnittsfläche von .centimetersquared werden g Quecksilber kilogrampercubicmeter um cm ausgelenkt. abcliste abc Zeige dass es sich hierbei um eine harmonische Schwingung handelt. abc Berechne die Schwingungsdauer. abc Berechne die maximale Geschwindigkeit. abc Berechne die maximale Beschleunigung. abcliste center tikzpicturescale. drawcolorgreen!!black dashed --- noderight Ruhelage; filldrawfillblue!!white drawblue ---- --- arc -:: -- ---- to controls+:. and +:. ------ arc :-: ------ -- - to controls+:. and +:. - ---; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; drawcolorgreen!!black |-latex .--. nodebelow y; filldrawcoloryellow!!white to controls+:. and +:. -- to controls+:-. and +:-. ; node at A; drawthick ----; drawthick ----; drawthick --; drawthick --; drawthick arc :-:; drawthick arc :-:; drawthick - to controls+:. and +:. -; drawthick to controls+:. and +:. ; drawthick - to controls+:-. and +:-. -; drawthick to controls+:-. and +:-. ; tikzpicture center
Solution:
abcliste abc Die Physik der Aufgabe ist von der Form F-Arho g y; also handelt es sich um eine harmonische Schwingung Fpropto y. abc Die Schwingungsdauer ist: TpisqrtfracmK pisqrtfracmArho g pisqrtfrac.kg .metersquared kilogrampercubicmeter .newtonperkilogram .s abc Die Geschwindigkeitsfunktion einer harmonisch schwingen Masse kann immer durch vt y_omegasinomega t repräsentiert werden. Diese Funktion ist maximal wenn der Sinus-Term eins wird. Also ist v_textrmmaxy_omega .meterpersecond. abc Genau gleich wie man die maximale Geschwindigkeit findet findet man die maximale Beschleunigung: a_textrmmaxy_omega^ .meterpersecondsquared abcliste
Contained in these collections:
-
Harmonische Schwingung: U-Rohr by TeXercises