Gasgesetze: Zustandsgleichung des idealen Gases 22
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine ``Soda-Club'' Gasflasche um kohlensäurehaltige Getränke herzustellen hat ein Volumen von .siL und enthält . kg CO_. a Berechnen Sie die Stoffmenge des CO_. b Berechnen Sie den Druck in der Flasche bei sicelsius. c Ist das CO_ unter diesen Bedingungen überhaupt gasförmig?
Solution:
% . Feb. Lie. * &texta n fracmM fracsig.+ .sig/mol uuline .simol &textb p fracnRTV fracRTV fracmM frac.siJ/molK .+siK.eesim^ fracsig.+ .sig/mol uuline .sibar * c Die kritische Temperatur von CO_ ist +sicelsius d.h. das Gas könnte bei sicelsius flüssig sein. Allerdings beträgt der kritische Druck .eeesiPa .sibar was deutlich über den berechneten .sibar liegt. Der Sättigungsdampfdruck über flüssigem CO_ beträgt .sibar bei sicelsius was auch über .sibar liegt. Das CO_ ist also gasförmig und die Flasche enthält auch keine CO_-Pfütze. newpage
Eine ``Soda-Club'' Gasflasche um kohlensäurehaltige Getränke herzustellen hat ein Volumen von .siL und enthält . kg CO_. a Berechnen Sie die Stoffmenge des CO_. b Berechnen Sie den Druck in der Flasche bei sicelsius. c Ist das CO_ unter diesen Bedingungen überhaupt gasförmig?
Solution:
% . Feb. Lie. * &texta n fracmM fracsig.+ .sig/mol uuline .simol &textb p fracnRTV fracRTV fracmM frac.siJ/molK .+siK.eesim^ fracsig.+ .sig/mol uuline .sibar * c Die kritische Temperatur von CO_ ist +sicelsius d.h. das Gas könnte bei sicelsius flüssig sein. Allerdings beträgt der kritische Druck .eeesiPa .sibar was deutlich über den berechneten .sibar liegt. Der Sättigungsdampfdruck über flüssigem CO_ beträgt .sibar bei sicelsius was auch über .sibar liegt. Das CO_ ist also gasförmig und die Flasche enthält auch keine CO_-Pfütze. newpage
Meta Information
Exercise:
Eine ``Soda-Club'' Gasflasche um kohlensäurehaltige Getränke herzustellen hat ein Volumen von .siL und enthält . kg CO_. a Berechnen Sie die Stoffmenge des CO_. b Berechnen Sie den Druck in der Flasche bei sicelsius. c Ist das CO_ unter diesen Bedingungen überhaupt gasförmig?
Solution:
% . Feb. Lie. * &texta n fracmM fracsig.+ .sig/mol uuline .simol &textb p fracnRTV fracRTV fracmM frac.siJ/molK .+siK.eesim^ fracsig.+ .sig/mol uuline .sibar * c Die kritische Temperatur von CO_ ist +sicelsius d.h. das Gas könnte bei sicelsius flüssig sein. Allerdings beträgt der kritische Druck .eeesiPa .sibar was deutlich über den berechneten .sibar liegt. Der Sättigungsdampfdruck über flüssigem CO_ beträgt .sibar bei sicelsius was auch über .sibar liegt. Das CO_ ist also gasförmig und die Flasche enthält auch keine CO_-Pfütze. newpage
Eine ``Soda-Club'' Gasflasche um kohlensäurehaltige Getränke herzustellen hat ein Volumen von .siL und enthält . kg CO_. a Berechnen Sie die Stoffmenge des CO_. b Berechnen Sie den Druck in der Flasche bei sicelsius. c Ist das CO_ unter diesen Bedingungen überhaupt gasförmig?
Solution:
% . Feb. Lie. * &texta n fracmM fracsig.+ .sig/mol uuline .simol &textb p fracnRTV fracRTV fracmM frac.siJ/molK .+siK.eesim^ fracsig.+ .sig/mol uuline .sibar * c Die kritische Temperatur von CO_ ist +sicelsius d.h. das Gas könnte bei sicelsius flüssig sein. Allerdings beträgt der kritische Druck .eeesiPa .sibar was deutlich über den berechneten .sibar liegt. Der Sättigungsdampfdruck über flüssigem CO_ beträgt .sibar bei sicelsius was auch über .sibar liegt. Das CO_ ist also gasförmig und die Flasche enthält auch keine CO_-Pfütze. newpage
Contained in these collections: