Generator in einem fiktiven Staat
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Magnetische Flussdichte \(B\) / elektrische Spannung \(U\) / Fläche \(A\) / Winkelgeschwindigkeit / Kreisfrequenz \(\omega\) / Anzahl \(N\) /
The following formulas must be used to solve the exercise:
\(\hat u = NBA\omega \quad \) \(\hat u = u \cdot \sqrt{2} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein fiktiver Staat gibt an die Wechselspannung in seinem elektronischen Versorgungsnetz betrage pqV. abcliste abc Berechne die Maximalspannung dieses sinusförmigen Wechselstromes. Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Ein Generator besteh aus einer Spule mit numpr Windungen einer Fläche von pqm^ und einem Magneten der Stärke pq.T könnte im fiktiven Staat Spannung ins Netz speisen. Welche Winkelfrequenz hat der Wechselstrom dort? Gib auch die Frequenz des Stromes an! Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Wie viel Zeit vergeht zwischen zwei aufeinanderfolgen Nulldurchgängen der sinusförmigen Spannung? abcliste
Solution:
abcliste abc Die Maximalspannung dieses sinusförmigen Wechselstromes ist U_sqrt pqVpq.V. abc Die Winkelfrequenz der Spannung im fiktiven Staat beträgt omega fracU_NBA fracpq.V pq.T pqm^ pq.rad/s. Die Frequenz dieser Spannung ist demnach f fracomegapi pq.Hz. abc Die Zeit die zwischen zwei Nulldurchgängen vergeht ist fracT fracfracf pq.s. abcliste
Ein fiktiver Staat gibt an die Wechselspannung in seinem elektronischen Versorgungsnetz betrage pqV. abcliste abc Berechne die Maximalspannung dieses sinusförmigen Wechselstromes. Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Ein Generator besteh aus einer Spule mit numpr Windungen einer Fläche von pqm^ und einem Magneten der Stärke pq.T könnte im fiktiven Staat Spannung ins Netz speisen. Welche Winkelfrequenz hat der Wechselstrom dort? Gib auch die Frequenz des Stromes an! Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Wie viel Zeit vergeht zwischen zwei aufeinanderfolgen Nulldurchgängen der sinusförmigen Spannung? abcliste
Solution:
abcliste abc Die Maximalspannung dieses sinusförmigen Wechselstromes ist U_sqrt pqVpq.V. abc Die Winkelfrequenz der Spannung im fiktiven Staat beträgt omega fracU_NBA fracpq.V pq.T pqm^ pq.rad/s. Die Frequenz dieser Spannung ist demnach f fracomegapi pq.Hz. abc Die Zeit die zwischen zwei Nulldurchgängen vergeht ist fracT fracfracf pq.s. abcliste
Meta Information
Exercise:
Ein fiktiver Staat gibt an die Wechselspannung in seinem elektronischen Versorgungsnetz betrage pqV. abcliste abc Berechne die Maximalspannung dieses sinusförmigen Wechselstromes. Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Ein Generator besteh aus einer Spule mit numpr Windungen einer Fläche von pqm^ und einem Magneten der Stärke pq.T könnte im fiktiven Staat Spannung ins Netz speisen. Welche Winkelfrequenz hat der Wechselstrom dort? Gib auch die Frequenz des Stromes an! Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Wie viel Zeit vergeht zwischen zwei aufeinanderfolgen Nulldurchgängen der sinusförmigen Spannung? abcliste
Solution:
abcliste abc Die Maximalspannung dieses sinusförmigen Wechselstromes ist U_sqrt pqVpq.V. abc Die Winkelfrequenz der Spannung im fiktiven Staat beträgt omega fracU_NBA fracpq.V pq.T pqm^ pq.rad/s. Die Frequenz dieser Spannung ist demnach f fracomegapi pq.Hz. abc Die Zeit die zwischen zwei Nulldurchgängen vergeht ist fracT fracfracf pq.s. abcliste
Ein fiktiver Staat gibt an die Wechselspannung in seinem elektronischen Versorgungsnetz betrage pqV. abcliste abc Berechne die Maximalspannung dieses sinusförmigen Wechselstromes. Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Ein Generator besteh aus einer Spule mit numpr Windungen einer Fläche von pqm^ und einem Magneten der Stärke pq.T könnte im fiktiven Staat Spannung ins Netz speisen. Welche Winkelfrequenz hat der Wechselstrom dort? Gib auch die Frequenz des Stromes an! Wenn du auf kein Ergebnis kommst rechne mit einem geschätzten Wert weiter. Die Güte der Schätzung hat keinen Einfluss auf die Beurteilung. abc Wie viel Zeit vergeht zwischen zwei aufeinanderfolgen Nulldurchgängen der sinusförmigen Spannung? abcliste
Solution:
abcliste abc Die Maximalspannung dieses sinusförmigen Wechselstromes ist U_sqrt pqVpq.V. abc Die Winkelfrequenz der Spannung im fiktiven Staat beträgt omega fracU_NBA fracpq.V pq.T pqm^ pq.rad/s. Die Frequenz dieser Spannung ist demnach f fracomegapi pq.Hz. abc Die Zeit die zwischen zwei Nulldurchgängen vergeht ist fracT fracfracf pq.s. abcliste
Contained in these collections:
-
Generatoren by TeXercises