Geschwindigkeit von Auto innerorts
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Einem Auto wird innerorts in der Fahrtrichtung ein Radarsignal mit der Frequenz fz nachgesandt welches sich nach der Reflexion am Wagen mit der Sefrequenz überlagert und eine Schwebungsfrequenz von df liefert. Welche Geschwindigkeit errechnet man daraus für das Auto?
Solution:
Beim Radarsignal handelt es sich um eine elektromagnetische Welle welche mit annähernd Lichtgeschwindigkeit dem Auto nachgesandt wird; beim Auto kommt also folge Frequenz an: f_ f_ frac-fracvc f_ fracc-vc Das Auto seinerseits set dann die Frequenz f_ f_ frac+fracvc f_ fraccc+v an den Radarkasten zurück. Dort entsteht zwischen den beiden Frequenzen f_ und f_ eine Schwebung mit der Frequenz Delta f f_-f_ f_ fracc-vc+v-f_ f_ leftfracc-vc+v-right Aufgelöst nach der Geschwindigkeit erhält man: v frac-fracDelta ff_cfracDelta ff_+ fraccDelta fDelta f + f_ v vC v fraccDelta fDelta f + f_ vTT vCTT
Einem Auto wird innerorts in der Fahrtrichtung ein Radarsignal mit der Frequenz fz nachgesandt welches sich nach der Reflexion am Wagen mit der Sefrequenz überlagert und eine Schwebungsfrequenz von df liefert. Welche Geschwindigkeit errechnet man daraus für das Auto?
Solution:
Beim Radarsignal handelt es sich um eine elektromagnetische Welle welche mit annähernd Lichtgeschwindigkeit dem Auto nachgesandt wird; beim Auto kommt also folge Frequenz an: f_ f_ frac-fracvc f_ fracc-vc Das Auto seinerseits set dann die Frequenz f_ f_ frac+fracvc f_ fraccc+v an den Radarkasten zurück. Dort entsteht zwischen den beiden Frequenzen f_ und f_ eine Schwebung mit der Frequenz Delta f f_-f_ f_ fracc-vc+v-f_ f_ leftfracc-vc+v-right Aufgelöst nach der Geschwindigkeit erhält man: v frac-fracDelta ff_cfracDelta ff_+ fraccDelta fDelta f + f_ v vC v fraccDelta fDelta f + f_ vTT vCTT
Meta Information
Exercise:
Einem Auto wird innerorts in der Fahrtrichtung ein Radarsignal mit der Frequenz fz nachgesandt welches sich nach der Reflexion am Wagen mit der Sefrequenz überlagert und eine Schwebungsfrequenz von df liefert. Welche Geschwindigkeit errechnet man daraus für das Auto?
Solution:
Beim Radarsignal handelt es sich um eine elektromagnetische Welle welche mit annähernd Lichtgeschwindigkeit dem Auto nachgesandt wird; beim Auto kommt also folge Frequenz an: f_ f_ frac-fracvc f_ fracc-vc Das Auto seinerseits set dann die Frequenz f_ f_ frac+fracvc f_ fraccc+v an den Radarkasten zurück. Dort entsteht zwischen den beiden Frequenzen f_ und f_ eine Schwebung mit der Frequenz Delta f f_-f_ f_ fracc-vc+v-f_ f_ leftfracc-vc+v-right Aufgelöst nach der Geschwindigkeit erhält man: v frac-fracDelta ff_cfracDelta ff_+ fraccDelta fDelta f + f_ v vC v fraccDelta fDelta f + f_ vTT vCTT
Einem Auto wird innerorts in der Fahrtrichtung ein Radarsignal mit der Frequenz fz nachgesandt welches sich nach der Reflexion am Wagen mit der Sefrequenz überlagert und eine Schwebungsfrequenz von df liefert. Welche Geschwindigkeit errechnet man daraus für das Auto?
Solution:
Beim Radarsignal handelt es sich um eine elektromagnetische Welle welche mit annähernd Lichtgeschwindigkeit dem Auto nachgesandt wird; beim Auto kommt also folge Frequenz an: f_ f_ frac-fracvc f_ fracc-vc Das Auto seinerseits set dann die Frequenz f_ f_ frac+fracvc f_ fraccc+v an den Radarkasten zurück. Dort entsteht zwischen den beiden Frequenzen f_ und f_ eine Schwebung mit der Frequenz Delta f f_-f_ f_ fracc-vc+v-f_ f_ leftfracc-vc+v-right Aufgelöst nach der Geschwindigkeit erhält man: v frac-fracDelta ff_cfracDelta ff_+ fraccDelta fDelta f + f_ v vC v fraccDelta fDelta f + f_ vTT vCTT
Contained in these collections:
-
Dopplereffekt by uz
Asked Quantity:
Geschwindigkeit \(v\)
in
Meter pro Sekunde \(\rm \frac{m}{s}\)
Physical Quantity
Geschwindigkeit \(v\)
Strecke pro Zeit
Veränderung des Ortes
Unit
Meter pro Sekunde (\(\rm \frac{m}{s}\))
Base?
SI?
Metric?
Coherent?
Imperial?