Gleichstromlehre: Einfache Schaltungen 64
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Betrachten Sie die Schaltung in Abb.reffig:RRSchalter. Zwischen A und D liegen .siV an. Weiter sei R_ R_ R_ siohm und R_ R_ siohm. Zwischen B und C sei ein offener Schalter. a Berechnen Sie den Ersatzwiderstand R_textAD. unten verwen b Wie gross ist der Strom durch R_ und welcher Bruchteil der Gesamtleistung wird in R_ verheizt? c Dann werde der Schalter zwischen B und C geschlossen d.h. diese Punkte sind jetzt durch einen idealen Leiter verbunden. Wie gross ist der Ersatzwiderstand jetzt? figureH includegraphicswidthtextwidth#image_path:RRSchalter# caption labelfig:RRSchalter figure
Solution:
% . August Lie. * &texta R_textAD R_ + left fracR_+R_ + fracR_+R_ right^- siohm + left frac+ + frac+ right^-siohm uulinesiohm &textb I_ I fracUR_textAD fracsiVsiohm uuline.siA qquad fracP_P_textAB fracR_ I^R_textAB I^ fracR_R_textAB fracsiohmsiohm uuline. &textc R_textAB' R_ + left fracR_+fracR_ right^- + left fracR_+fracR_ right^- &qquad siohm + left frac + frac right^-siohm + left frac + frac right^-siohm uulinesiohm * Die Antworten von a und c sind nur deshalb gleich weil R_ R_ und R_ R_ ist. newpage
Betrachten Sie die Schaltung in Abb.reffig:RRSchalter. Zwischen A und D liegen .siV an. Weiter sei R_ R_ R_ siohm und R_ R_ siohm. Zwischen B und C sei ein offener Schalter. a Berechnen Sie den Ersatzwiderstand R_textAD. unten verwen b Wie gross ist der Strom durch R_ und welcher Bruchteil der Gesamtleistung wird in R_ verheizt? c Dann werde der Schalter zwischen B und C geschlossen d.h. diese Punkte sind jetzt durch einen idealen Leiter verbunden. Wie gross ist der Ersatzwiderstand jetzt? figureH includegraphicswidthtextwidth#image_path:RRSchalter# caption labelfig:RRSchalter figure
Solution:
% . August Lie. * &texta R_textAD R_ + left fracR_+R_ + fracR_+R_ right^- siohm + left frac+ + frac+ right^-siohm uulinesiohm &textb I_ I fracUR_textAD fracsiVsiohm uuline.siA qquad fracP_P_textAB fracR_ I^R_textAB I^ fracR_R_textAB fracsiohmsiohm uuline. &textc R_textAB' R_ + left fracR_+fracR_ right^- + left fracR_+fracR_ right^- &qquad siohm + left frac + frac right^-siohm + left frac + frac right^-siohm uulinesiohm * Die Antworten von a und c sind nur deshalb gleich weil R_ R_ und R_ R_ ist. newpage
Meta Information
Exercise:
Betrachten Sie die Schaltung in Abb.reffig:RRSchalter. Zwischen A und D liegen .siV an. Weiter sei R_ R_ R_ siohm und R_ R_ siohm. Zwischen B und C sei ein offener Schalter. a Berechnen Sie den Ersatzwiderstand R_textAD. unten verwen b Wie gross ist der Strom durch R_ und welcher Bruchteil der Gesamtleistung wird in R_ verheizt? c Dann werde der Schalter zwischen B und C geschlossen d.h. diese Punkte sind jetzt durch einen idealen Leiter verbunden. Wie gross ist der Ersatzwiderstand jetzt? figureH includegraphicswidthtextwidth#image_path:RRSchalter# caption labelfig:RRSchalter figure
Solution:
% . August Lie. * &texta R_textAD R_ + left fracR_+R_ + fracR_+R_ right^- siohm + left frac+ + frac+ right^-siohm uulinesiohm &textb I_ I fracUR_textAD fracsiVsiohm uuline.siA qquad fracP_P_textAB fracR_ I^R_textAB I^ fracR_R_textAB fracsiohmsiohm uuline. &textc R_textAB' R_ + left fracR_+fracR_ right^- + left fracR_+fracR_ right^- &qquad siohm + left frac + frac right^-siohm + left frac + frac right^-siohm uulinesiohm * Die Antworten von a und c sind nur deshalb gleich weil R_ R_ und R_ R_ ist. newpage
Betrachten Sie die Schaltung in Abb.reffig:RRSchalter. Zwischen A und D liegen .siV an. Weiter sei R_ R_ R_ siohm und R_ R_ siohm. Zwischen B und C sei ein offener Schalter. a Berechnen Sie den Ersatzwiderstand R_textAD. unten verwen b Wie gross ist der Strom durch R_ und welcher Bruchteil der Gesamtleistung wird in R_ verheizt? c Dann werde der Schalter zwischen B und C geschlossen d.h. diese Punkte sind jetzt durch einen idealen Leiter verbunden. Wie gross ist der Ersatzwiderstand jetzt? figureH includegraphicswidthtextwidth#image_path:RRSchalter# caption labelfig:RRSchalter figure
Solution:
% . August Lie. * &texta R_textAD R_ + left fracR_+R_ + fracR_+R_ right^- siohm + left frac+ + frac+ right^-siohm uulinesiohm &textb I_ I fracUR_textAD fracsiVsiohm uuline.siA qquad fracP_P_textAB fracR_ I^R_textAB I^ fracR_R_textAB fracsiohmsiohm uuline. &textc R_textAB' R_ + left fracR_+fracR_ right^- + left fracR_+fracR_ right^- &qquad siohm + left frac + frac right^-siohm + left frac + frac right^-siohm uulinesiohm * Die Antworten von a und c sind nur deshalb gleich weil R_ R_ und R_ R_ ist. newpage
Contained in these collections: