Gleichstromlehre: Einfache Schaltungen 8
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Berechnen Sie für die Schaltung in Abbildungreffig:Schaltu_R_Kurz a den Ersatzwiderstand R_res b den Gesamtstrom I_ c den Strom I_ durch den Widerstand R_ d die Spannung U_ die an R_ anliegt e die Leistung P_ die von R_ aufgenommen wird. figureH includegraphicswidthtextwidth#image_path:Schaltu_R_Kurz# caption labelfig:Schaltu_R_Kurz figure
Solution:
% . Nov. Lie. Widerstand R_ ist parallel zu R_ geschaltet und Widerstand R_ zu R_. * &texta R_res fracR_ R_R_+R_ + fracR_ R_R_+R_ fracsiOmega siOmegasiOmega+siOmega + fracsiOmega siOmegasiOmega+siOmega .siOmega uulinesiOmega &textb I_ fracU_R_res frac.siV.siOmega .simA uuline.simA &textc R_I_R_I_ text und I_ I_ + I_ Rightarrow I_ I_ fracR_R_+R_ &quad I_ fracU_R_res fracR_R_+R_ frac.siV.siOmega fracsiOmegasiOmega+siOmega uuline.simA &textd U_ R_I_ R_I_ fracR_R_+R_ fracU_R_res fracR_R_R_+R_ frac.siV.siOmega fracsiOmega siOmegasiOmega+siOmega uuline.siV &texte P_R_I_^ R_left fracU_R_res fracR_R_+R_ right^ siOmega left frac.siV.siOmega fracsiOmegasiOmega+siOmega right^ uulinesimW * newpage
Berechnen Sie für die Schaltung in Abbildungreffig:Schaltu_R_Kurz a den Ersatzwiderstand R_res b den Gesamtstrom I_ c den Strom I_ durch den Widerstand R_ d die Spannung U_ die an R_ anliegt e die Leistung P_ die von R_ aufgenommen wird. figureH includegraphicswidthtextwidth#image_path:Schaltu_R_Kurz# caption labelfig:Schaltu_R_Kurz figure
Solution:
% . Nov. Lie. Widerstand R_ ist parallel zu R_ geschaltet und Widerstand R_ zu R_. * &texta R_res fracR_ R_R_+R_ + fracR_ R_R_+R_ fracsiOmega siOmegasiOmega+siOmega + fracsiOmega siOmegasiOmega+siOmega .siOmega uulinesiOmega &textb I_ fracU_R_res frac.siV.siOmega .simA uuline.simA &textc R_I_R_I_ text und I_ I_ + I_ Rightarrow I_ I_ fracR_R_+R_ &quad I_ fracU_R_res fracR_R_+R_ frac.siV.siOmega fracsiOmegasiOmega+siOmega uuline.simA &textd U_ R_I_ R_I_ fracR_R_+R_ fracU_R_res fracR_R_R_+R_ frac.siV.siOmega fracsiOmega siOmegasiOmega+siOmega uuline.siV &texte P_R_I_^ R_left fracU_R_res fracR_R_+R_ right^ siOmega left frac.siV.siOmega fracsiOmegasiOmega+siOmega right^ uulinesimW * newpage
Meta Information
Exercise:
Berechnen Sie für die Schaltung in Abbildungreffig:Schaltu_R_Kurz a den Ersatzwiderstand R_res b den Gesamtstrom I_ c den Strom I_ durch den Widerstand R_ d die Spannung U_ die an R_ anliegt e die Leistung P_ die von R_ aufgenommen wird. figureH includegraphicswidthtextwidth#image_path:Schaltu_R_Kurz# caption labelfig:Schaltu_R_Kurz figure
Solution:
% . Nov. Lie. Widerstand R_ ist parallel zu R_ geschaltet und Widerstand R_ zu R_. * &texta R_res fracR_ R_R_+R_ + fracR_ R_R_+R_ fracsiOmega siOmegasiOmega+siOmega + fracsiOmega siOmegasiOmega+siOmega .siOmega uulinesiOmega &textb I_ fracU_R_res frac.siV.siOmega .simA uuline.simA &textc R_I_R_I_ text und I_ I_ + I_ Rightarrow I_ I_ fracR_R_+R_ &quad I_ fracU_R_res fracR_R_+R_ frac.siV.siOmega fracsiOmegasiOmega+siOmega uuline.simA &textd U_ R_I_ R_I_ fracR_R_+R_ fracU_R_res fracR_R_R_+R_ frac.siV.siOmega fracsiOmega siOmegasiOmega+siOmega uuline.siV &texte P_R_I_^ R_left fracU_R_res fracR_R_+R_ right^ siOmega left frac.siV.siOmega fracsiOmegasiOmega+siOmega right^ uulinesimW * newpage
Berechnen Sie für die Schaltung in Abbildungreffig:Schaltu_R_Kurz a den Ersatzwiderstand R_res b den Gesamtstrom I_ c den Strom I_ durch den Widerstand R_ d die Spannung U_ die an R_ anliegt e die Leistung P_ die von R_ aufgenommen wird. figureH includegraphicswidthtextwidth#image_path:Schaltu_R_Kurz# caption labelfig:Schaltu_R_Kurz figure
Solution:
% . Nov. Lie. Widerstand R_ ist parallel zu R_ geschaltet und Widerstand R_ zu R_. * &texta R_res fracR_ R_R_+R_ + fracR_ R_R_+R_ fracsiOmega siOmegasiOmega+siOmega + fracsiOmega siOmegasiOmega+siOmega .siOmega uulinesiOmega &textb I_ fracU_R_res frac.siV.siOmega .simA uuline.simA &textc R_I_R_I_ text und I_ I_ + I_ Rightarrow I_ I_ fracR_R_+R_ &quad I_ fracU_R_res fracR_R_+R_ frac.siV.siOmega fracsiOmegasiOmega+siOmega uuline.simA &textd U_ R_I_ R_I_ fracR_R_+R_ fracU_R_res fracR_R_R_+R_ frac.siV.siOmega fracsiOmega siOmegasiOmega+siOmega uuline.siV &texte P_R_I_^ R_left fracU_R_res fracR_R_+R_ right^ siOmega left frac.siV.siOmega fracsiOmegasiOmega+siOmega right^ uulinesimW * newpage
Contained in these collections: