Hochziehen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Körper werde mit konstanter Kraft F unter einem Winkel bO zur schiefen Ebene welche ihrerseits um aO gegenüber der Horizontalen geneigt ist hochgeschoben so dass der Körper eine konstante Geschwindigkeit von vO beibehalten kann. abcliste abc Wie gross ist die Kraft F falls der Körper eine Masse von .kg hat und der Gleitreibungskoeffizient mu_G . ist. abc Wer oder in welcher Situation könnte man / müsste man ein solches Problem lösen? abcliste center tikzpicturescale. M/.stylerectangledrawfilllightgrayminimum size.cmthin plane/.styledrawblackline widthpt defiangle % Angle of the inclined plane defiiangle % Angle of the Force defangleiangle+iiangle % Angle of the inclined plane + Angle of the Force defarcr.cm % Radius of the arc used to indicate angles %% Sketch drawplane coordinate base -- coordinatepos. mid ++iangle: coordinate top |- base; path mid nodeMrotateiangleyshift.cm M m; draw base++arcr arc :iangle:arcr; path base++iangle*.:arcr+pt node alpha; % Kraft drawdashed thick M.east -- ++iangle:.cm; draw very thick - M.east -- ++angle:.cm nodeabove vec F; draw M.east++arcr+.cm.cm arc iangle:angle:arcr+.cm; path M.east++angl.cm:arcr+pt node beta; tikzpicture center
Solution:
enumerate item Die Bewegungsgleichungen lauten: eqnarray* F_Resx Fcosbeta - F_R - F_Gsinalpha mm F_Resy Fsinbeta + F_N - F_Gcosalpha eqnarray* Aufgelöst nach F erhalten wir: F mgfracsinalpha+mucosalphamusinbeta+cosbetaapprox .N. item z.b. Ski-Lifthersteller enumerate
Ein Körper werde mit konstanter Kraft F unter einem Winkel bO zur schiefen Ebene welche ihrerseits um aO gegenüber der Horizontalen geneigt ist hochgeschoben so dass der Körper eine konstante Geschwindigkeit von vO beibehalten kann. abcliste abc Wie gross ist die Kraft F falls der Körper eine Masse von .kg hat und der Gleitreibungskoeffizient mu_G . ist. abc Wer oder in welcher Situation könnte man / müsste man ein solches Problem lösen? abcliste center tikzpicturescale. M/.stylerectangledrawfilllightgrayminimum size.cmthin plane/.styledrawblackline widthpt defiangle % Angle of the inclined plane defiiangle % Angle of the Force defangleiangle+iiangle % Angle of the inclined plane + Angle of the Force defarcr.cm % Radius of the arc used to indicate angles %% Sketch drawplane coordinate base -- coordinatepos. mid ++iangle: coordinate top |- base; path mid nodeMrotateiangleyshift.cm M m; draw base++arcr arc :iangle:arcr; path base++iangle*.:arcr+pt node alpha; % Kraft drawdashed thick M.east -- ++iangle:.cm; draw very thick - M.east -- ++angle:.cm nodeabove vec F; draw M.east++arcr+.cm.cm arc iangle:angle:arcr+.cm; path M.east++angl.cm:arcr+pt node beta; tikzpicture center
Solution:
enumerate item Die Bewegungsgleichungen lauten: eqnarray* F_Resx Fcosbeta - F_R - F_Gsinalpha mm F_Resy Fsinbeta + F_N - F_Gcosalpha eqnarray* Aufgelöst nach F erhalten wir: F mgfracsinalpha+mucosalphamusinbeta+cosbetaapprox .N. item z.b. Ski-Lifthersteller enumerate
Meta Information
Exercise:
Ein Körper werde mit konstanter Kraft F unter einem Winkel bO zur schiefen Ebene welche ihrerseits um aO gegenüber der Horizontalen geneigt ist hochgeschoben so dass der Körper eine konstante Geschwindigkeit von vO beibehalten kann. abcliste abc Wie gross ist die Kraft F falls der Körper eine Masse von .kg hat und der Gleitreibungskoeffizient mu_G . ist. abc Wer oder in welcher Situation könnte man / müsste man ein solches Problem lösen? abcliste center tikzpicturescale. M/.stylerectangledrawfilllightgrayminimum size.cmthin plane/.styledrawblackline widthpt defiangle % Angle of the inclined plane defiiangle % Angle of the Force defangleiangle+iiangle % Angle of the inclined plane + Angle of the Force defarcr.cm % Radius of the arc used to indicate angles %% Sketch drawplane coordinate base -- coordinatepos. mid ++iangle: coordinate top |- base; path mid nodeMrotateiangleyshift.cm M m; draw base++arcr arc :iangle:arcr; path base++iangle*.:arcr+pt node alpha; % Kraft drawdashed thick M.east -- ++iangle:.cm; draw very thick - M.east -- ++angle:.cm nodeabove vec F; draw M.east++arcr+.cm.cm arc iangle:angle:arcr+.cm; path M.east++angl.cm:arcr+pt node beta; tikzpicture center
Solution:
enumerate item Die Bewegungsgleichungen lauten: eqnarray* F_Resx Fcosbeta - F_R - F_Gsinalpha mm F_Resy Fsinbeta + F_N - F_Gcosalpha eqnarray* Aufgelöst nach F erhalten wir: F mgfracsinalpha+mucosalphamusinbeta+cosbetaapprox .N. item z.b. Ski-Lifthersteller enumerate
Ein Körper werde mit konstanter Kraft F unter einem Winkel bO zur schiefen Ebene welche ihrerseits um aO gegenüber der Horizontalen geneigt ist hochgeschoben so dass der Körper eine konstante Geschwindigkeit von vO beibehalten kann. abcliste abc Wie gross ist die Kraft F falls der Körper eine Masse von .kg hat und der Gleitreibungskoeffizient mu_G . ist. abc Wer oder in welcher Situation könnte man / müsste man ein solches Problem lösen? abcliste center tikzpicturescale. M/.stylerectangledrawfilllightgrayminimum size.cmthin plane/.styledrawblackline widthpt defiangle % Angle of the inclined plane defiiangle % Angle of the Force defangleiangle+iiangle % Angle of the inclined plane + Angle of the Force defarcr.cm % Radius of the arc used to indicate angles %% Sketch drawplane coordinate base -- coordinatepos. mid ++iangle: coordinate top |- base; path mid nodeMrotateiangleyshift.cm M m; draw base++arcr arc :iangle:arcr; path base++iangle*.:arcr+pt node alpha; % Kraft drawdashed thick M.east -- ++iangle:.cm; draw very thick - M.east -- ++angle:.cm nodeabove vec F; draw M.east++arcr+.cm.cm arc iangle:angle:arcr+.cm; path M.east++angl.cm:arcr+pt node beta; tikzpicture center
Solution:
enumerate item Die Bewegungsgleichungen lauten: eqnarray* F_Resx Fcosbeta - F_R - F_Gsinalpha mm F_Resy Fsinbeta + F_N - F_Gcosalpha eqnarray* Aufgelöst nach F erhalten wir: F mgfracsinalpha+mucosalphamusinbeta+cosbetaapprox .N. item z.b. Ski-Lifthersteller enumerate
Contained in these collections:
-
Schiefe Ebene 3 by uz