Holzfloss
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Länge \(\ell\) / Masse \(m\) / Kraft \(F\) / Volumen \(V\) / Ortsfaktor \(g\) / Höhe \(h\) / Dichte \(\varrho\) / Breite \(b\) /
The following formulas must be used to solve the exercise:
\(F = \varrho V g \quad \) \(F = mg \quad \) \(V = abc \quad \)
No explanation / solution video for this exercise has yet been created.
But there is a video to a similar exercise:
In case your browser prevents YouTube embedding: https://youtu.be/bPb6s-kPkn4
But there is a video to a similar exercise:
Exercise:
Ein beladenes Holzfloss hat eine Fläche von m^ und ist cm dick. Die Dichte des Holzes beträgt .g/cm^. Beim Schwimmen ragt das Floß .cm aus dem Wasser. Berechne die Masse die das Floss trägt.
Solution:
Bedingung für das Schwimmen des Flosses ist dass betraglich die Auftriebskraft gleich der Summe von Gewichtskraft der Plattform und Gewichtskraft der Ladung ist. Es muss also gelten F_AF_gP+F_gL myRarrow F_A-F_gPF_gL. Nun ist F_gLm_Lg F_gPV_Prho_Hg und F_AV'_Prho_Wg. Man erhält somit V'_Prho_Wg - V_Prho_Hg m_Lg myRarrow V'_Prho_W - V_Prho_H m_L Mit einem verdrängten Wasservolumen von V'_P Ah' .m^. und einem Volumen der Plattform von V_P Ah m^. erhält man schliesslich m_L V'_Prho_W - V_Prho_H kg. Das Floss kann also eine Ladung von .to transportieren.
Ein beladenes Holzfloss hat eine Fläche von m^ und ist cm dick. Die Dichte des Holzes beträgt .g/cm^. Beim Schwimmen ragt das Floß .cm aus dem Wasser. Berechne die Masse die das Floss trägt.
Solution:
Bedingung für das Schwimmen des Flosses ist dass betraglich die Auftriebskraft gleich der Summe von Gewichtskraft der Plattform und Gewichtskraft der Ladung ist. Es muss also gelten F_AF_gP+F_gL myRarrow F_A-F_gPF_gL. Nun ist F_gLm_Lg F_gPV_Prho_Hg und F_AV'_Prho_Wg. Man erhält somit V'_Prho_Wg - V_Prho_Hg m_Lg myRarrow V'_Prho_W - V_Prho_H m_L Mit einem verdrängten Wasservolumen von V'_P Ah' .m^. und einem Volumen der Plattform von V_P Ah m^. erhält man schliesslich m_L V'_Prho_W - V_Prho_H kg. Das Floss kann also eine Ladung von .to transportieren.
Meta Information
Exercise:
Ein beladenes Holzfloss hat eine Fläche von m^ und ist cm dick. Die Dichte des Holzes beträgt .g/cm^. Beim Schwimmen ragt das Floß .cm aus dem Wasser. Berechne die Masse die das Floss trägt.
Solution:
Bedingung für das Schwimmen des Flosses ist dass betraglich die Auftriebskraft gleich der Summe von Gewichtskraft der Plattform und Gewichtskraft der Ladung ist. Es muss also gelten F_AF_gP+F_gL myRarrow F_A-F_gPF_gL. Nun ist F_gLm_Lg F_gPV_Prho_Hg und F_AV'_Prho_Wg. Man erhält somit V'_Prho_Wg - V_Prho_Hg m_Lg myRarrow V'_Prho_W - V_Prho_H m_L Mit einem verdrängten Wasservolumen von V'_P Ah' .m^. und einem Volumen der Plattform von V_P Ah m^. erhält man schliesslich m_L V'_Prho_W - V_Prho_H kg. Das Floss kann also eine Ladung von .to transportieren.
Ein beladenes Holzfloss hat eine Fläche von m^ und ist cm dick. Die Dichte des Holzes beträgt .g/cm^. Beim Schwimmen ragt das Floß .cm aus dem Wasser. Berechne die Masse die das Floss trägt.
Solution:
Bedingung für das Schwimmen des Flosses ist dass betraglich die Auftriebskraft gleich der Summe von Gewichtskraft der Plattform und Gewichtskraft der Ladung ist. Es muss also gelten F_AF_gP+F_gL myRarrow F_A-F_gPF_gL. Nun ist F_gLm_Lg F_gPV_Prho_Hg und F_AV'_Prho_Wg. Man erhält somit V'_Prho_Wg - V_Prho_Hg m_Lg myRarrow V'_Prho_W - V_Prho_H m_L Mit einem verdrängten Wasservolumen von V'_P Ah' .m^. und einem Volumen der Plattform von V_P Ah m^. erhält man schliesslich m_L V'_Prho_W - V_Prho_H kg. Das Floss kann also eine Ladung von .to transportieren.
Contained in these collections:
-
Floss oder Eisscholle by TeXercises