Hupendes Auto
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Zeit \(t\) / Geschwindigkeit \(v\) / Beschleunigung \(a\) / Frequenz \(f\) /
The following formulas must be used to solve the exercise:
\(f_B = f_S \cdot \frac{c\pm v_B}{c\mp v_S} \quad \) \(v = v_0 + at \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Auto hupe mit fsO und beschleunige dabei währ tO aus dem Stillstand mit aO. Welche Frequenz hört ein Jogger vO wenn sich das Auto nach dem Beschleunigungsvorgang mit konstanter Geschwindigkeit von vorne auf ihn zu bewegt?
Solution:
Geg sscfS fs t t a aO a v vO v % GesFrequenz des Beobachtersf siHz % Die Geschwindigkeit des Autos nach dem Beschleunigungsvorgang beträgt al sscvS vsF a t vs. Der Beobachter hört folglich eine Frequenz von al f sscfS fracc+vc-sscvS fF fs fracc + vc - vs f approx fS % f fF &approx fS
Ein Auto hupe mit fsO und beschleunige dabei währ tO aus dem Stillstand mit aO. Welche Frequenz hört ein Jogger vO wenn sich das Auto nach dem Beschleunigungsvorgang mit konstanter Geschwindigkeit von vorne auf ihn zu bewegt?
Solution:
Geg sscfS fs t t a aO a v vO v % GesFrequenz des Beobachtersf siHz % Die Geschwindigkeit des Autos nach dem Beschleunigungsvorgang beträgt al sscvS vsF a t vs. Der Beobachter hört folglich eine Frequenz von al f sscfS fracc+vc-sscvS fF fs fracc + vc - vs f approx fS % f fF &approx fS
Meta Information
Exercise:
Ein Auto hupe mit fsO und beschleunige dabei währ tO aus dem Stillstand mit aO. Welche Frequenz hört ein Jogger vO wenn sich das Auto nach dem Beschleunigungsvorgang mit konstanter Geschwindigkeit von vorne auf ihn zu bewegt?
Solution:
Geg sscfS fs t t a aO a v vO v % GesFrequenz des Beobachtersf siHz % Die Geschwindigkeit des Autos nach dem Beschleunigungsvorgang beträgt al sscvS vsF a t vs. Der Beobachter hört folglich eine Frequenz von al f sscfS fracc+vc-sscvS fF fs fracc + vc - vs f approx fS % f fF &approx fS
Ein Auto hupe mit fsO und beschleunige dabei währ tO aus dem Stillstand mit aO. Welche Frequenz hört ein Jogger vO wenn sich das Auto nach dem Beschleunigungsvorgang mit konstanter Geschwindigkeit von vorne auf ihn zu bewegt?
Solution:
Geg sscfS fs t t a aO a v vO v % GesFrequenz des Beobachtersf siHz % Die Geschwindigkeit des Autos nach dem Beschleunigungsvorgang beträgt al sscvS vsF a t vs. Der Beobachter hört folglich eine Frequenz von al f sscfS fracc+vc-sscvS fF fs fracc + vc - vs f approx fS % f fF &approx fS
Contained in these collections:
-
-
Dopplereffekt und Beschleunigung 2. Formel by TeXercises1 | 1
-
Dopplereffekt by uz
-
Dopplereffekt by aej