Hydraulik
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bei einer handbetriebenen hydraulischen Presse DuSiedrückst dudrücken Sie einen Kolben mit Radius reO mit einer Kraft von FeO nach unten wodurch der Arbeitskolben der Presse mit stattlichen FzO hochgedrückt wird. Wie gross ist der Radius des Arbeitskolbens?
Solution:
Geg r_ reO re F_ FeO Fe F_ FzO Fz % GesRadiusr_ sim % Die Querschnittsfläche des gedrückten Kolbens beträgt SolQtyAepi r_^pi*reX**m^ al A_ AeF pi qtyre^ Ae. % Bei der angegebenen Kraft wird in der Hydraulikflüssigkeit ein Druck von SolQtypfracF_AeFFeX/AeXPa al p fracF_A_ pF fracFeAe p erzeugt. Wenn dieser am Arbeitskolben zu einer Kraftwirkung von FzO führt muss die Fläche des Arbeitskolbens SolQtyAzfracF_F_ pi r_^FzX/pXm^ al A_ fracF_p fracF_pF AzF fracFzp Az betragen. Der Radius des Kolbens ist demnach SolQtyrzsqrtfracF_F_ r_sqrtAzX/pim al r_ sqrtfracA_pi sqrtfracAzFpi rzF sqrtfracAzpi rz approx rzS. % r_ rzF &approx rzS % Alternativ lässt sich die Aufgabe schneller mit Proportionalitäten lösen: al F &sim r^ fracF_r_^ fracF_r_^.
Bei einer handbetriebenen hydraulischen Presse DuSiedrückst dudrücken Sie einen Kolben mit Radius reO mit einer Kraft von FeO nach unten wodurch der Arbeitskolben der Presse mit stattlichen FzO hochgedrückt wird. Wie gross ist der Radius des Arbeitskolbens?
Solution:
Geg r_ reO re F_ FeO Fe F_ FzO Fz % GesRadiusr_ sim % Die Querschnittsfläche des gedrückten Kolbens beträgt SolQtyAepi r_^pi*reX**m^ al A_ AeF pi qtyre^ Ae. % Bei der angegebenen Kraft wird in der Hydraulikflüssigkeit ein Druck von SolQtypfracF_AeFFeX/AeXPa al p fracF_A_ pF fracFeAe p erzeugt. Wenn dieser am Arbeitskolben zu einer Kraftwirkung von FzO führt muss die Fläche des Arbeitskolbens SolQtyAzfracF_F_ pi r_^FzX/pXm^ al A_ fracF_p fracF_pF AzF fracFzp Az betragen. Der Radius des Kolbens ist demnach SolQtyrzsqrtfracF_F_ r_sqrtAzX/pim al r_ sqrtfracA_pi sqrtfracAzFpi rzF sqrtfracAzpi rz approx rzS. % r_ rzF &approx rzS % Alternativ lässt sich die Aufgabe schneller mit Proportionalitäten lösen: al F &sim r^ fracF_r_^ fracF_r_^.
Meta Information
Exercise:
Bei einer handbetriebenen hydraulischen Presse DuSiedrückst dudrücken Sie einen Kolben mit Radius reO mit einer Kraft von FeO nach unten wodurch der Arbeitskolben der Presse mit stattlichen FzO hochgedrückt wird. Wie gross ist der Radius des Arbeitskolbens?
Solution:
Geg r_ reO re F_ FeO Fe F_ FzO Fz % GesRadiusr_ sim % Die Querschnittsfläche des gedrückten Kolbens beträgt SolQtyAepi r_^pi*reX**m^ al A_ AeF pi qtyre^ Ae. % Bei der angegebenen Kraft wird in der Hydraulikflüssigkeit ein Druck von SolQtypfracF_AeFFeX/AeXPa al p fracF_A_ pF fracFeAe p erzeugt. Wenn dieser am Arbeitskolben zu einer Kraftwirkung von FzO führt muss die Fläche des Arbeitskolbens SolQtyAzfracF_F_ pi r_^FzX/pXm^ al A_ fracF_p fracF_pF AzF fracFzp Az betragen. Der Radius des Kolbens ist demnach SolQtyrzsqrtfracF_F_ r_sqrtAzX/pim al r_ sqrtfracA_pi sqrtfracAzFpi rzF sqrtfracAzpi rz approx rzS. % r_ rzF &approx rzS % Alternativ lässt sich die Aufgabe schneller mit Proportionalitäten lösen: al F &sim r^ fracF_r_^ fracF_r_^.
Bei einer handbetriebenen hydraulischen Presse DuSiedrückst dudrücken Sie einen Kolben mit Radius reO mit einer Kraft von FeO nach unten wodurch der Arbeitskolben der Presse mit stattlichen FzO hochgedrückt wird. Wie gross ist der Radius des Arbeitskolbens?
Solution:
Geg r_ reO re F_ FeO Fe F_ FzO Fz % GesRadiusr_ sim % Die Querschnittsfläche des gedrückten Kolbens beträgt SolQtyAepi r_^pi*reX**m^ al A_ AeF pi qtyre^ Ae. % Bei der angegebenen Kraft wird in der Hydraulikflüssigkeit ein Druck von SolQtypfracF_AeFFeX/AeXPa al p fracF_A_ pF fracFeAe p erzeugt. Wenn dieser am Arbeitskolben zu einer Kraftwirkung von FzO führt muss die Fläche des Arbeitskolbens SolQtyAzfracF_F_ pi r_^FzX/pXm^ al A_ fracF_p fracF_pF AzF fracFzp Az betragen. Der Radius des Kolbens ist demnach SolQtyrzsqrtfracF_F_ r_sqrtAzX/pim al r_ sqrtfracA_pi sqrtfracAzFpi rzF sqrtfracAzpi rz approx rzS. % r_ rzF &approx rzS % Alternativ lässt sich die Aufgabe schneller mit Proportionalitäten lösen: al F &sim r^ fracF_r_^ fracF_r_^.
Contained in these collections: