Impedanz
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Bestimme die komplexe Impedanz der folgen Kombination aus Kondensatoren Spulen und Widerständen und daraus den Scheinwiderstand sowie die Phasenverschiebung zwischen Spannung und Strom. Die Ausdrücke müssen textbfnicht algebraisch vereinfacht werden! center circuitikzeuropean draw tocapacitorlC_ ++ tocapacitorlC_ ++ tocute inductorlL_ ++ tocute inductorlL_ ++ toRlR_ ++ toRlR_ ++; circuitikz center
Solution:
Die komplexen Widerstände der einzelnen Schaltelemente sind al tilde Z_R R tilde Z_C fraciomega C tilde Z_L i omega L. Nach der Regel für die Serieschaltung folgt für die Impedanz al tilde Z R_ + R_ + iomega L_ + iomega L_ + fraciomega C_ + fraciomega C_ R_ + R_ + i qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_ Z sqrtqtyR_ + R_^ + qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_^ Delta phi arctanfracomegaL_+L_ - fracomegaqtyfracC_ + fracC_R_ + R_
Bestimme die komplexe Impedanz der folgen Kombination aus Kondensatoren Spulen und Widerständen und daraus den Scheinwiderstand sowie die Phasenverschiebung zwischen Spannung und Strom. Die Ausdrücke müssen textbfnicht algebraisch vereinfacht werden! center circuitikzeuropean draw tocapacitorlC_ ++ tocapacitorlC_ ++ tocute inductorlL_ ++ tocute inductorlL_ ++ toRlR_ ++ toRlR_ ++; circuitikz center
Solution:
Die komplexen Widerstände der einzelnen Schaltelemente sind al tilde Z_R R tilde Z_C fraciomega C tilde Z_L i omega L. Nach der Regel für die Serieschaltung folgt für die Impedanz al tilde Z R_ + R_ + iomega L_ + iomega L_ + fraciomega C_ + fraciomega C_ R_ + R_ + i qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_ Z sqrtqtyR_ + R_^ + qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_^ Delta phi arctanfracomegaL_+L_ - fracomegaqtyfracC_ + fracC_R_ + R_
Meta Information
Exercise:
Bestimme die komplexe Impedanz der folgen Kombination aus Kondensatoren Spulen und Widerständen und daraus den Scheinwiderstand sowie die Phasenverschiebung zwischen Spannung und Strom. Die Ausdrücke müssen textbfnicht algebraisch vereinfacht werden! center circuitikzeuropean draw tocapacitorlC_ ++ tocapacitorlC_ ++ tocute inductorlL_ ++ tocute inductorlL_ ++ toRlR_ ++ toRlR_ ++; circuitikz center
Solution:
Die komplexen Widerstände der einzelnen Schaltelemente sind al tilde Z_R R tilde Z_C fraciomega C tilde Z_L i omega L. Nach der Regel für die Serieschaltung folgt für die Impedanz al tilde Z R_ + R_ + iomega L_ + iomega L_ + fraciomega C_ + fraciomega C_ R_ + R_ + i qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_ Z sqrtqtyR_ + R_^ + qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_^ Delta phi arctanfracomegaL_+L_ - fracomegaqtyfracC_ + fracC_R_ + R_
Bestimme die komplexe Impedanz der folgen Kombination aus Kondensatoren Spulen und Widerständen und daraus den Scheinwiderstand sowie die Phasenverschiebung zwischen Spannung und Strom. Die Ausdrücke müssen textbfnicht algebraisch vereinfacht werden! center circuitikzeuropean draw tocapacitorlC_ ++ tocapacitorlC_ ++ tocute inductorlL_ ++ tocute inductorlL_ ++ toRlR_ ++ toRlR_ ++; circuitikz center
Solution:
Die komplexen Widerstände der einzelnen Schaltelemente sind al tilde Z_R R tilde Z_C fraciomega C tilde Z_L i omega L. Nach der Regel für die Serieschaltung folgt für die Impedanz al tilde Z R_ + R_ + iomega L_ + iomega L_ + fraciomega C_ + fraciomega C_ R_ + R_ + i qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_ Z sqrtqtyR_ + R_^ + qtyomegaL_+L_ - fracomegaqtyfracC_ + fracC_^ Delta phi arctanfracomegaL_+L_ - fracomegaqtyfracC_ + fracC_R_ + R_
Contained in these collections: