Kapazität von Kondensator im LC-Schwingkreis
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Schwingkreis soll auf die Frequenz der technischen Wechselspannung f abgestimmt werden. Die Schwing-kreis-spule besitzt N Windungen eine Länge von Lo und einen Durchmesser von dz. Ein Eisenkern in der Spule vergrössert ihre Induktivität mit dem Faktor x. Berechne die Kapazität des parallel zur Spule geschalteten Kondensators.
Solution:
Geg f f N N ell Lo L d dz d sscmur x % GesKapazitätC siF % Die Querschnittsfläche der Spule beträgt SolQtyAfracpi d^pi*dn**/m^ al A pi r^ AF fracpi qtyd^ A. Ihre Induktivität ist folglich SolQtyLLfracmu_sscmurpi d^ N^ellxn*ncmuoX*Nn***AX/LnH al L fracmu_sscmurN^Aell fracmu_sscmurN^fracd^piell LLF fracncmuo x qtyN^ AL LL. % Um eine Frequenz von f zu erreichen muss die Kapazität des Kondensators SolQtyCfracellmu_sscmurpi^d^f^N^/*pi***fn***LLXF al C fracomega^ L fracpi^f^ LLF CF fracpi f^ LL C approx CS betragen. % C CF &approx CS
Ein Schwingkreis soll auf die Frequenz der technischen Wechselspannung f abgestimmt werden. Die Schwing-kreis-spule besitzt N Windungen eine Länge von Lo und einen Durchmesser von dz. Ein Eisenkern in der Spule vergrössert ihre Induktivität mit dem Faktor x. Berechne die Kapazität des parallel zur Spule geschalteten Kondensators.
Solution:
Geg f f N N ell Lo L d dz d sscmur x % GesKapazitätC siF % Die Querschnittsfläche der Spule beträgt SolQtyAfracpi d^pi*dn**/m^ al A pi r^ AF fracpi qtyd^ A. Ihre Induktivität ist folglich SolQtyLLfracmu_sscmurpi d^ N^ellxn*ncmuoX*Nn***AX/LnH al L fracmu_sscmurN^Aell fracmu_sscmurN^fracd^piell LLF fracncmuo x qtyN^ AL LL. % Um eine Frequenz von f zu erreichen muss die Kapazität des Kondensators SolQtyCfracellmu_sscmurpi^d^f^N^/*pi***fn***LLXF al C fracomega^ L fracpi^f^ LLF CF fracpi f^ LL C approx CS betragen. % C CF &approx CS
Meta Information
Exercise:
Ein Schwingkreis soll auf die Frequenz der technischen Wechselspannung f abgestimmt werden. Die Schwing-kreis-spule besitzt N Windungen eine Länge von Lo und einen Durchmesser von dz. Ein Eisenkern in der Spule vergrössert ihre Induktivität mit dem Faktor x. Berechne die Kapazität des parallel zur Spule geschalteten Kondensators.
Solution:
Geg f f N N ell Lo L d dz d sscmur x % GesKapazitätC siF % Die Querschnittsfläche der Spule beträgt SolQtyAfracpi d^pi*dn**/m^ al A pi r^ AF fracpi qtyd^ A. Ihre Induktivität ist folglich SolQtyLLfracmu_sscmurpi d^ N^ellxn*ncmuoX*Nn***AX/LnH al L fracmu_sscmurN^Aell fracmu_sscmurN^fracd^piell LLF fracncmuo x qtyN^ AL LL. % Um eine Frequenz von f zu erreichen muss die Kapazität des Kondensators SolQtyCfracellmu_sscmurpi^d^f^N^/*pi***fn***LLXF al C fracomega^ L fracpi^f^ LLF CF fracpi f^ LL C approx CS betragen. % C CF &approx CS
Ein Schwingkreis soll auf die Frequenz der technischen Wechselspannung f abgestimmt werden. Die Schwing-kreis-spule besitzt N Windungen eine Länge von Lo und einen Durchmesser von dz. Ein Eisenkern in der Spule vergrössert ihre Induktivität mit dem Faktor x. Berechne die Kapazität des parallel zur Spule geschalteten Kondensators.
Solution:
Geg f f N N ell Lo L d dz d sscmur x % GesKapazitätC siF % Die Querschnittsfläche der Spule beträgt SolQtyAfracpi d^pi*dn**/m^ al A pi r^ AF fracpi qtyd^ A. Ihre Induktivität ist folglich SolQtyLLfracmu_sscmurpi d^ N^ellxn*ncmuoX*Nn***AX/LnH al L fracmu_sscmurN^Aell fracmu_sscmurN^fracd^piell LLF fracncmuo x qtyN^ AL LL. % Um eine Frequenz von f zu erreichen muss die Kapazität des Kondensators SolQtyCfracellmu_sscmurpi^d^f^N^/*pi***fn***LLXF al C fracomega^ L fracpi^f^ LLF CF fracpi f^ LL C approx CS betragen. % C CF &approx CS
Contained in these collections:
-
Schwingkreis by pw
-
LC-Schwingkreis by uz
-
LC-Schwingkreis by pw
Asked Quantity:
Kapazität \(C\)
in
Farad \(\rm F\)
Physical Quantity
Unit