Kleiner Prinz
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Kraft \(F\) / Energie \(E\) / Radius \(r\) /
The following formulas must be used to solve the exercise:
\(F = G \dfrac{m_1m_2}{r^2} \quad \) \(E_{\rm \scriptscriptstyle kin} = \dfrac12 mv^2 \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Mit welcher Geschwindigkeit muss der kleine Prinz von Sa-Exupéry laufen um schwerelos zu werden? Sein Planet habe einen Radius von R_P km und die gleiche Dichte wie die Erde.
Solution:
Der Prinz wird genau dann schwerelos wenn seine Zentripetalbeschleunigung gerade gleich gross ist wie die Beschleunigung durch die Gravitationskraft. Dann wirkt keine Normalkraft mehr auf ihn. F_Z F_G m fracv_P^R_P mg_P v_P sqrtg_PR_P Um dies berechnen zu können muss man allerdings zuerst den Ortsfaktor g_P über die Dichte berechnen: g_E G fracfracpi R_E^ rhoR_E^ G fracpi R_E rho rho fracg_Epi r_EG g_P G fracpi R_P rho G fracpi R_P fracg_Epi R_EG fracR_PR_E g_E Oben eingesetzt führt das schliesslich auf: v_P sqrtfracR_PR_E g_E R_P sqrtfracR_P^R_E g_E .fracms
Mit welcher Geschwindigkeit muss der kleine Prinz von Sa-Exupéry laufen um schwerelos zu werden? Sein Planet habe einen Radius von R_P km und die gleiche Dichte wie die Erde.
Solution:
Der Prinz wird genau dann schwerelos wenn seine Zentripetalbeschleunigung gerade gleich gross ist wie die Beschleunigung durch die Gravitationskraft. Dann wirkt keine Normalkraft mehr auf ihn. F_Z F_G m fracv_P^R_P mg_P v_P sqrtg_PR_P Um dies berechnen zu können muss man allerdings zuerst den Ortsfaktor g_P über die Dichte berechnen: g_E G fracfracpi R_E^ rhoR_E^ G fracpi R_E rho rho fracg_Epi r_EG g_P G fracpi R_P rho G fracpi R_P fracg_Epi R_EG fracR_PR_E g_E Oben eingesetzt führt das schliesslich auf: v_P sqrtfracR_PR_E g_E R_P sqrtfracR_P^R_E g_E .fracms
Meta Information
Exercise:
Mit welcher Geschwindigkeit muss der kleine Prinz von Sa-Exupéry laufen um schwerelos zu werden? Sein Planet habe einen Radius von R_P km und die gleiche Dichte wie die Erde.
Solution:
Der Prinz wird genau dann schwerelos wenn seine Zentripetalbeschleunigung gerade gleich gross ist wie die Beschleunigung durch die Gravitationskraft. Dann wirkt keine Normalkraft mehr auf ihn. F_Z F_G m fracv_P^R_P mg_P v_P sqrtg_PR_P Um dies berechnen zu können muss man allerdings zuerst den Ortsfaktor g_P über die Dichte berechnen: g_E G fracfracpi R_E^ rhoR_E^ G fracpi R_E rho rho fracg_Epi r_EG g_P G fracpi R_P rho G fracpi R_P fracg_Epi R_EG fracR_PR_E g_E Oben eingesetzt führt das schliesslich auf: v_P sqrtfracR_PR_E g_E R_P sqrtfracR_P^R_E g_E .fracms
Mit welcher Geschwindigkeit muss der kleine Prinz von Sa-Exupéry laufen um schwerelos zu werden? Sein Planet habe einen Radius von R_P km und die gleiche Dichte wie die Erde.
Solution:
Der Prinz wird genau dann schwerelos wenn seine Zentripetalbeschleunigung gerade gleich gross ist wie die Beschleunigung durch die Gravitationskraft. Dann wirkt keine Normalkraft mehr auf ihn. F_Z F_G m fracv_P^R_P mg_P v_P sqrtg_PR_P Um dies berechnen zu können muss man allerdings zuerst den Ortsfaktor g_P über die Dichte berechnen: g_E G fracfracpi R_E^ rhoR_E^ G fracpi R_E rho rho fracg_Epi r_EG g_P G fracpi R_P rho G fracpi R_P fracg_Epi R_EG fracR_PR_E g_E Oben eingesetzt führt das schliesslich auf: v_P sqrtfracR_PR_E g_E R_P sqrtfracR_P^R_E g_E .fracms
Contained in these collections:
-
Fluchtgeschwindigkeit by TeXercises
Asked Quantity:
Geschwindigkeit \(v\)
in
Meter pro Sekunde \(\rm \frac{m}{s}\)
Physical Quantity
Geschwindigkeit \(v\)
Strecke pro Zeit
Veränderung des Ortes
Unit
Meter pro Sekunde (\(\rm \frac{m}{s}\))
Base?
SI?
Metric?
Coherent?
Imperial?