Leiter stützen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Eine Leiter werde wie in der Abbildung gestützt so dass noch ein Viertel der Leiterlänge darüber hinaus ragt. Die Leiter habe eine Masse von m kg. Die Leiter bildet mit dem Boden einen Winkel alpha grad. Der Reibungskoeffizient zwischen Boden und Leiter sei mu .. Bestimmen Sie die horizontale und vertikale Kraft welche von der Stütze auf die Leiter einwirkt. center tikzpicturescale. draw very thick -- ; draw thick nodeabove right alpha -- . -- node left tfracl ; draw thick -- .; tikzpicture center
Solution:
Wir müssen Newton I für starre Körper erfüllen d.h. eqnarray* F_res_x & F_R - F_H F_res_y & F_N + F_V - F_g_L M_res & F_g_Lfracl cosalpha + F_R fraclsinalpha - F_N fraclcosalpha eqnarray* Aus der letzten Gleichung erhalten wir für F_N: F_N fracmg-mutanalpha approx N. Für die horizontale und vertikale Komponente der Kraft F erhalten wir: F_H mu F_N approx .Nqquadtextundqquad F_V F_g_L - F_N approx .N.
Eine Leiter werde wie in der Abbildung gestützt so dass noch ein Viertel der Leiterlänge darüber hinaus ragt. Die Leiter habe eine Masse von m kg. Die Leiter bildet mit dem Boden einen Winkel alpha grad. Der Reibungskoeffizient zwischen Boden und Leiter sei mu .. Bestimmen Sie die horizontale und vertikale Kraft welche von der Stütze auf die Leiter einwirkt. center tikzpicturescale. draw very thick -- ; draw thick nodeabove right alpha -- . -- node left tfracl ; draw thick -- .; tikzpicture center
Solution:
Wir müssen Newton I für starre Körper erfüllen d.h. eqnarray* F_res_x & F_R - F_H F_res_y & F_N + F_V - F_g_L M_res & F_g_Lfracl cosalpha + F_R fraclsinalpha - F_N fraclcosalpha eqnarray* Aus der letzten Gleichung erhalten wir für F_N: F_N fracmg-mutanalpha approx N. Für die horizontale und vertikale Komponente der Kraft F erhalten wir: F_H mu F_N approx .Nqquadtextundqquad F_V F_g_L - F_N approx .N.
Meta Information
Exercise:
Eine Leiter werde wie in der Abbildung gestützt so dass noch ein Viertel der Leiterlänge darüber hinaus ragt. Die Leiter habe eine Masse von m kg. Die Leiter bildet mit dem Boden einen Winkel alpha grad. Der Reibungskoeffizient zwischen Boden und Leiter sei mu .. Bestimmen Sie die horizontale und vertikale Kraft welche von der Stütze auf die Leiter einwirkt. center tikzpicturescale. draw very thick -- ; draw thick nodeabove right alpha -- . -- node left tfracl ; draw thick -- .; tikzpicture center
Solution:
Wir müssen Newton I für starre Körper erfüllen d.h. eqnarray* F_res_x & F_R - F_H F_res_y & F_N + F_V - F_g_L M_res & F_g_Lfracl cosalpha + F_R fraclsinalpha - F_N fraclcosalpha eqnarray* Aus der letzten Gleichung erhalten wir für F_N: F_N fracmg-mutanalpha approx N. Für die horizontale und vertikale Komponente der Kraft F erhalten wir: F_H mu F_N approx .Nqquadtextundqquad F_V F_g_L - F_N approx .N.
Eine Leiter werde wie in der Abbildung gestützt so dass noch ein Viertel der Leiterlänge darüber hinaus ragt. Die Leiter habe eine Masse von m kg. Die Leiter bildet mit dem Boden einen Winkel alpha grad. Der Reibungskoeffizient zwischen Boden und Leiter sei mu .. Bestimmen Sie die horizontale und vertikale Kraft welche von der Stütze auf die Leiter einwirkt. center tikzpicturescale. draw very thick -- ; draw thick nodeabove right alpha -- . -- node left tfracl ; draw thick -- .; tikzpicture center
Solution:
Wir müssen Newton I für starre Körper erfüllen d.h. eqnarray* F_res_x & F_R - F_H F_res_y & F_N + F_V - F_g_L M_res & F_g_Lfracl cosalpha + F_R fraclsinalpha - F_N fraclcosalpha eqnarray* Aus der letzten Gleichung erhalten wir für F_N: F_N fracmg-mutanalpha approx N. Für die horizontale und vertikale Komponente der Kraft F erhalten wir: F_H mu F_N approx .Nqquadtextundqquad F_V F_g_L - F_N approx .N.
Contained in these collections: