Luft im Klassenzimmer
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Im Laufe einer Unterrichtstunde erwärmt sich die Luft in einem m langen m breiten und m hohen Klassenzimmer von cel auf cel. enumerate item Berechnen Sie wie viel sim^ Luft dabei durch Öffnungen nach aussen entweichen. item Berechnen Sie die Kraft auf ein .sim^ großes Fenster am Ende der Stunde wenn das Zimmer währ der Stunde luftdicht abgeschlossen werden könnte. Nehmen Sie an der Druck wäre zu Beginn der Lektione innen und aussen ^siPa. enumerate
Solution:
Geg.: V_sim^ T_.siK T_.siK enumerate item Ges.: Delta V bei pmathrmconst. Es gilt Gay-Lussac: fracV_T_fracV_T_Ra V_fracV_T_T_.sim^ Damit erhalten wir: Delta VV_-V_res.m^ item Ges.: FDelta p A für pmathrmconst. Es gilt Amontons: fracp_T_fracp_T_Ra p_fracp_T_T_. ^siPa Damit erhalten wir: Delta pp_-p_. ^siPa Ra FDelta p Ares. ^Nres.kN enumerate
Im Laufe einer Unterrichtstunde erwärmt sich die Luft in einem m langen m breiten und m hohen Klassenzimmer von cel auf cel. enumerate item Berechnen Sie wie viel sim^ Luft dabei durch Öffnungen nach aussen entweichen. item Berechnen Sie die Kraft auf ein .sim^ großes Fenster am Ende der Stunde wenn das Zimmer währ der Stunde luftdicht abgeschlossen werden könnte. Nehmen Sie an der Druck wäre zu Beginn der Lektione innen und aussen ^siPa. enumerate
Solution:
Geg.: V_sim^ T_.siK T_.siK enumerate item Ges.: Delta V bei pmathrmconst. Es gilt Gay-Lussac: fracV_T_fracV_T_Ra V_fracV_T_T_.sim^ Damit erhalten wir: Delta VV_-V_res.m^ item Ges.: FDelta p A für pmathrmconst. Es gilt Amontons: fracp_T_fracp_T_Ra p_fracp_T_T_. ^siPa Damit erhalten wir: Delta pp_-p_. ^siPa Ra FDelta p Ares. ^Nres.kN enumerate
Meta Information
Exercise:
Im Laufe einer Unterrichtstunde erwärmt sich die Luft in einem m langen m breiten und m hohen Klassenzimmer von cel auf cel. enumerate item Berechnen Sie wie viel sim^ Luft dabei durch Öffnungen nach aussen entweichen. item Berechnen Sie die Kraft auf ein .sim^ großes Fenster am Ende der Stunde wenn das Zimmer währ der Stunde luftdicht abgeschlossen werden könnte. Nehmen Sie an der Druck wäre zu Beginn der Lektione innen und aussen ^siPa. enumerate
Solution:
Geg.: V_sim^ T_.siK T_.siK enumerate item Ges.: Delta V bei pmathrmconst. Es gilt Gay-Lussac: fracV_T_fracV_T_Ra V_fracV_T_T_.sim^ Damit erhalten wir: Delta VV_-V_res.m^ item Ges.: FDelta p A für pmathrmconst. Es gilt Amontons: fracp_T_fracp_T_Ra p_fracp_T_T_. ^siPa Damit erhalten wir: Delta pp_-p_. ^siPa Ra FDelta p Ares. ^Nres.kN enumerate
Im Laufe einer Unterrichtstunde erwärmt sich die Luft in einem m langen m breiten und m hohen Klassenzimmer von cel auf cel. enumerate item Berechnen Sie wie viel sim^ Luft dabei durch Öffnungen nach aussen entweichen. item Berechnen Sie die Kraft auf ein .sim^ großes Fenster am Ende der Stunde wenn das Zimmer währ der Stunde luftdicht abgeschlossen werden könnte. Nehmen Sie an der Druck wäre zu Beginn der Lektione innen und aussen ^siPa. enumerate
Solution:
Geg.: V_sim^ T_.siK T_.siK enumerate item Ges.: Delta V bei pmathrmconst. Es gilt Gay-Lussac: fracV_T_fracV_T_Ra V_fracV_T_T_.sim^ Damit erhalten wir: Delta VV_-V_res.m^ item Ges.: FDelta p A für pmathrmconst. Es gilt Amontons: fracp_T_fracp_T_Ra p_fracp_T_T_. ^siPa Damit erhalten wir: Delta pp_-p_. ^siPa Ra FDelta p Ares. ^Nres.kN enumerate
Contained in these collections:

