Magnetfeldstärke in gewickelter Spule
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein lO langer Draht aus Wolfram rWO mit dO Dicke bzw. Durchmesser werde zu einer Spule mit rO Radius gewickelt und anschliess an UO angeschlossen. Welche Magnetfeldstärke kann man in der Mitte der Spule erwarten?
Solution:
Geg L lO l rho rWO rW d dO d r rO r U UO U GesSpulen-Längeellsim Eine Windung der Spule besteht aus ell_ pi r pi r u Draht. Man kann aus dem Draht also N fracLell_ fracLpi r fraclu Na Windungen machen. Alle diese Windungen aneinander gereiht ergeben eine ell N d fracdLpi r Na d lS lSP- lange Spule. Der Radius des Wolfram-Drahtes ist dfracr womit seine Querschnittsfläche SolQtyApi*dX^/metersquared A pi r^ pi leftfracdright^ pi fracd^ pi fracqtyd^ A und sein Widerstand SolQtyRrWX*lX/AXohm R rho fracLA rho fracLpi d^ rW fraclA R sind. An UO Spannung fliessen durch den Draht also SolQtyIUX/RXA I fracUR fracUrho fracLpi d^ fracpi d^ Urho L fracUR I Stromstärke. Diese erzeugt in der Mitte der Spule SolQtyBncmun*lSX/NaX*IXT B mu_ fracellN I mu_ fracellN fracpi d^ Urho L ncmu fraclSNa I B approx BS BP- B mu_ fracpi ell d^ Urho NL BS BP-
Ein lO langer Draht aus Wolfram rWO mit dO Dicke bzw. Durchmesser werde zu einer Spule mit rO Radius gewickelt und anschliess an UO angeschlossen. Welche Magnetfeldstärke kann man in der Mitte der Spule erwarten?
Solution:
Geg L lO l rho rWO rW d dO d r rO r U UO U GesSpulen-Längeellsim Eine Windung der Spule besteht aus ell_ pi r pi r u Draht. Man kann aus dem Draht also N fracLell_ fracLpi r fraclu Na Windungen machen. Alle diese Windungen aneinander gereiht ergeben eine ell N d fracdLpi r Na d lS lSP- lange Spule. Der Radius des Wolfram-Drahtes ist dfracr womit seine Querschnittsfläche SolQtyApi*dX^/metersquared A pi r^ pi leftfracdright^ pi fracd^ pi fracqtyd^ A und sein Widerstand SolQtyRrWX*lX/AXohm R rho fracLA rho fracLpi d^ rW fraclA R sind. An UO Spannung fliessen durch den Draht also SolQtyIUX/RXA I fracUR fracUrho fracLpi d^ fracpi d^ Urho L fracUR I Stromstärke. Diese erzeugt in der Mitte der Spule SolQtyBncmun*lSX/NaX*IXT B mu_ fracellN I mu_ fracellN fracpi d^ Urho L ncmu fraclSNa I B approx BS BP- B mu_ fracpi ell d^ Urho NL BS BP-
Meta Information
Exercise:
Ein lO langer Draht aus Wolfram rWO mit dO Dicke bzw. Durchmesser werde zu einer Spule mit rO Radius gewickelt und anschliess an UO angeschlossen. Welche Magnetfeldstärke kann man in der Mitte der Spule erwarten?
Solution:
Geg L lO l rho rWO rW d dO d r rO r U UO U GesSpulen-Längeellsim Eine Windung der Spule besteht aus ell_ pi r pi r u Draht. Man kann aus dem Draht also N fracLell_ fracLpi r fraclu Na Windungen machen. Alle diese Windungen aneinander gereiht ergeben eine ell N d fracdLpi r Na d lS lSP- lange Spule. Der Radius des Wolfram-Drahtes ist dfracr womit seine Querschnittsfläche SolQtyApi*dX^/metersquared A pi r^ pi leftfracdright^ pi fracd^ pi fracqtyd^ A und sein Widerstand SolQtyRrWX*lX/AXohm R rho fracLA rho fracLpi d^ rW fraclA R sind. An UO Spannung fliessen durch den Draht also SolQtyIUX/RXA I fracUR fracUrho fracLpi d^ fracpi d^ Urho L fracUR I Stromstärke. Diese erzeugt in der Mitte der Spule SolQtyBncmun*lSX/NaX*IXT B mu_ fracellN I mu_ fracellN fracpi d^ Urho L ncmu fraclSNa I B approx BS BP- B mu_ fracpi ell d^ Urho NL BS BP-
Ein lO langer Draht aus Wolfram rWO mit dO Dicke bzw. Durchmesser werde zu einer Spule mit rO Radius gewickelt und anschliess an UO angeschlossen. Welche Magnetfeldstärke kann man in der Mitte der Spule erwarten?
Solution:
Geg L lO l rho rWO rW d dO d r rO r U UO U GesSpulen-Längeellsim Eine Windung der Spule besteht aus ell_ pi r pi r u Draht. Man kann aus dem Draht also N fracLell_ fracLpi r fraclu Na Windungen machen. Alle diese Windungen aneinander gereiht ergeben eine ell N d fracdLpi r Na d lS lSP- lange Spule. Der Radius des Wolfram-Drahtes ist dfracr womit seine Querschnittsfläche SolQtyApi*dX^/metersquared A pi r^ pi leftfracdright^ pi fracd^ pi fracqtyd^ A und sein Widerstand SolQtyRrWX*lX/AXohm R rho fracLA rho fracLpi d^ rW fraclA R sind. An UO Spannung fliessen durch den Draht also SolQtyIUX/RXA I fracUR fracUrho fracLpi d^ fracpi d^ Urho L fracUR I Stromstärke. Diese erzeugt in der Mitte der Spule SolQtyBncmun*lSX/NaX*IXT B mu_ fracellN I mu_ fracellN fracpi d^ Urho L ncmu fraclSNa I B approx BS BP- B mu_ fracpi ell d^ Urho NL BS BP-
Contained in these collections:
-
Magnetfeld -- Spule by uz
-
Magnetismus und Optik by ha
Asked Quantity:
Magnetische Flussdichte \(B\)
in
Tesla \(\rm T\)
Physical Quantity
Magnetische Flussdichte \(B\)
Magnetfeld
Eigenschaft des Raumes, Kraft auf magnetische Körper auszuüben
Unit
Tesla (\(\rm T\))
Base?
SI?
Metric?
Coherent?
Imperial?
\(\rm9\,T\): CERN
\(\rm5\cdot 10^{-5}\,T\): Erdmagnetfeld
\(\rm3\,T\): MRI