Magnetic field in the Uetliberg railway
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
User:Iwouldstay , , 2005, digital photograph, Wikipedia
<Wikipedia> (retrieved on October 31, 2022)
Need help? Yes, please!
The following quantities appear in the problem:
elektrische Stromstärke \(I\) / Magnetische Flussdichte \(B\) / elektrische Spannung \(U\) / Leistung \(P, \Phi\) /
The following formulas must be used to solve the exercise:
\(P = UI \quad \) \(B = \dfrac{\mu_0 I}{2\pi r} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Could you use a compass to determine whether the Uetliberg railway is operating? The train on this line which goes up the hill the people of Zurich call a enquotemountain is powered by direct current DC and has a rated power of PO. Is the magnetic field produced by the current in the overhead line at a distance of rO comparable to the strength of the Earth’s magnetic field? If so a compass would be able to detect it.
Solution:
Geg U UO U P PO P r rO r GesMagnetfeldBsitesla The current can be calculated from the rated power and the operating voltage: I fracPU fracPU .eA I This current flowing in a straight conductor generates a magnetic field of the following strength at a distance of rO: B fracmu_ Ipi r fracmu_ Ppi r U fracncmu Api r B approx BS BP- The Earth's magnetic field also has a magnitude of np. Therefore the current strength can be detected using a compass. B fracmu_ Ppi r U BS BP-
Could you use a compass to determine whether the Uetliberg railway is operating? The train on this line which goes up the hill the people of Zurich call a enquotemountain is powered by direct current DC and has a rated power of PO. Is the magnetic field produced by the current in the overhead line at a distance of rO comparable to the strength of the Earth’s magnetic field? If so a compass would be able to detect it.
Solution:
Geg U UO U P PO P r rO r GesMagnetfeldBsitesla The current can be calculated from the rated power and the operating voltage: I fracPU fracPU .eA I This current flowing in a straight conductor generates a magnetic field of the following strength at a distance of rO: B fracmu_ Ipi r fracmu_ Ppi r U fracncmu Api r B approx BS BP- The Earth's magnetic field also has a magnitude of np. Therefore the current strength can be detected using a compass. B fracmu_ Ppi r U BS BP-
Meta Information
Exercise:
Could you use a compass to determine whether the Uetliberg railway is operating? The train on this line which goes up the hill the people of Zurich call a enquotemountain is powered by direct current DC and has a rated power of PO. Is the magnetic field produced by the current in the overhead line at a distance of rO comparable to the strength of the Earth’s magnetic field? If so a compass would be able to detect it.
Solution:
Geg U UO U P PO P r rO r GesMagnetfeldBsitesla The current can be calculated from the rated power and the operating voltage: I fracPU fracPU .eA I This current flowing in a straight conductor generates a magnetic field of the following strength at a distance of rO: B fracmu_ Ipi r fracmu_ Ppi r U fracncmu Api r B approx BS BP- The Earth's magnetic field also has a magnitude of np. Therefore the current strength can be detected using a compass. B fracmu_ Ppi r U BS BP-
Could you use a compass to determine whether the Uetliberg railway is operating? The train on this line which goes up the hill the people of Zurich call a enquotemountain is powered by direct current DC and has a rated power of PO. Is the magnetic field produced by the current in the overhead line at a distance of rO comparable to the strength of the Earth’s magnetic field? If so a compass would be able to detect it.
Solution:
Geg U UO U P PO P r rO r GesMagnetfeldBsitesla The current can be calculated from the rated power and the operating voltage: I fracPU fracPU .eA I This current flowing in a straight conductor generates a magnetic field of the following strength at a distance of rO: B fracmu_ Ipi r fracmu_ Ppi r U fracncmu Api r B approx BS BP- The Earth's magnetic field also has a magnitude of np. Therefore the current strength can be detected using a compass. B fracmu_ Ppi r U BS BP-
Contained in these collections:
-
-
Magnetfeld gerader Leiter und elektrische Leistung by TeXercises
Asked Quantity:
Magnetische Flussdichte \(B\)
in
Tesla \(\rm T\)
Physical Quantity
Magnetische Flussdichte \(B\)
Magnetfeld
Eigenschaft des Raumes, Kraft auf magnetische Körper auszuüben
Unit
Tesla (\(\rm T\))
Base?
SI?
Metric?
Coherent?
Imperial?
\(\rm9\,T\): CERN
\(\rm5\cdot 10^{-5}\,T\): Erdmagnetfeld
\(\rm3\,T\): MRI

