Magnetischer Fluss durch selbstgebastelte Spule
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Du wickelst NO Windungen eines Kupferdrahts mit deO Durchmesser eng nebeneinander auf eine lO lange WC-Papierrolle mit dzO Durchmesser. Die Spannungsquelle liefert UO. Wie gross ist der magnetische Fluss im stationären Zustand?
Solution:
Geg N N rho r quad textKupfer d_ deO de ell lO l d_ dzO dz U U % GesMagnetischer FlussvarPhi siWb % Die Fläche der Spule beträgt SolQtyAzfracpi d_^pi*dzX**/m^ al A_ pi r_^ pi qtyfracd^ AzF fracpi qtydz^ Az. Ihre Induktivität ist folglich SolQtyLfracmu_pi d_^ N^ellncmuoX*AzX/lX*NX**H al L mu_ fracA_ell N^ mu_ fracAzFell N^ LF ncmuo fracAzl N^ L. Die Drahtlänge ist das Produkt aus Anzahl Windungen und Umfang SolQtylprpi N d_pi*NX*dzXm al ell' lprF pi N dz lpr. Seine Querschnittsfläche lässt sich aus dem Durchmesser berechnen SolQtyAefracpi d_^pi*deX**/m^ al A_ pi r_^ pi qtyfracd_^ AeF fracpi qtyde^ Ae. Der Widerstand des Drahtes beträgt SolQtyRfracrho Nd_d_^rX*lprX/AeXohm al R fracrhoell'A_ fracrho lprFAeF RF fracr lprAe R. Legt man UO Spannung an dann fliessen im Draht im stationären Zustand SolQtyIfracUd_^rho Nd_UX/RXA al I fracUR fracURF IF fracUR I. Der magnetische Fluss durch diese Spule ist dann SolQtyPfracmu_pi d_^d_ N Urho ellLX*IXWb al varPhi LI LF IF PF L I P varPhi PF &approx PS
Du wickelst NO Windungen eines Kupferdrahts mit deO Durchmesser eng nebeneinander auf eine lO lange WC-Papierrolle mit dzO Durchmesser. Die Spannungsquelle liefert UO. Wie gross ist der magnetische Fluss im stationären Zustand?
Solution:
Geg N N rho r quad textKupfer d_ deO de ell lO l d_ dzO dz U U % GesMagnetischer FlussvarPhi siWb % Die Fläche der Spule beträgt SolQtyAzfracpi d_^pi*dzX**/m^ al A_ pi r_^ pi qtyfracd^ AzF fracpi qtydz^ Az. Ihre Induktivität ist folglich SolQtyLfracmu_pi d_^ N^ellncmuoX*AzX/lX*NX**H al L mu_ fracA_ell N^ mu_ fracAzFell N^ LF ncmuo fracAzl N^ L. Die Drahtlänge ist das Produkt aus Anzahl Windungen und Umfang SolQtylprpi N d_pi*NX*dzXm al ell' lprF pi N dz lpr. Seine Querschnittsfläche lässt sich aus dem Durchmesser berechnen SolQtyAefracpi d_^pi*deX**/m^ al A_ pi r_^ pi qtyfracd_^ AeF fracpi qtyde^ Ae. Der Widerstand des Drahtes beträgt SolQtyRfracrho Nd_d_^rX*lprX/AeXohm al R fracrhoell'A_ fracrho lprFAeF RF fracr lprAe R. Legt man UO Spannung an dann fliessen im Draht im stationären Zustand SolQtyIfracUd_^rho Nd_UX/RXA al I fracUR fracURF IF fracUR I. Der magnetische Fluss durch diese Spule ist dann SolQtyPfracmu_pi d_^d_ N Urho ellLX*IXWb al varPhi LI LF IF PF L I P varPhi PF &approx PS
Meta Information
Exercise:
Du wickelst NO Windungen eines Kupferdrahts mit deO Durchmesser eng nebeneinander auf eine lO lange WC-Papierrolle mit dzO Durchmesser. Die Spannungsquelle liefert UO. Wie gross ist der magnetische Fluss im stationären Zustand?
Solution:
Geg N N rho r quad textKupfer d_ deO de ell lO l d_ dzO dz U U % GesMagnetischer FlussvarPhi siWb % Die Fläche der Spule beträgt SolQtyAzfracpi d_^pi*dzX**/m^ al A_ pi r_^ pi qtyfracd^ AzF fracpi qtydz^ Az. Ihre Induktivität ist folglich SolQtyLfracmu_pi d_^ N^ellncmuoX*AzX/lX*NX**H al L mu_ fracA_ell N^ mu_ fracAzFell N^ LF ncmuo fracAzl N^ L. Die Drahtlänge ist das Produkt aus Anzahl Windungen und Umfang SolQtylprpi N d_pi*NX*dzXm al ell' lprF pi N dz lpr. Seine Querschnittsfläche lässt sich aus dem Durchmesser berechnen SolQtyAefracpi d_^pi*deX**/m^ al A_ pi r_^ pi qtyfracd_^ AeF fracpi qtyde^ Ae. Der Widerstand des Drahtes beträgt SolQtyRfracrho Nd_d_^rX*lprX/AeXohm al R fracrhoell'A_ fracrho lprFAeF RF fracr lprAe R. Legt man UO Spannung an dann fliessen im Draht im stationären Zustand SolQtyIfracUd_^rho Nd_UX/RXA al I fracUR fracURF IF fracUR I. Der magnetische Fluss durch diese Spule ist dann SolQtyPfracmu_pi d_^d_ N Urho ellLX*IXWb al varPhi LI LF IF PF L I P varPhi PF &approx PS
Du wickelst NO Windungen eines Kupferdrahts mit deO Durchmesser eng nebeneinander auf eine lO lange WC-Papierrolle mit dzO Durchmesser. Die Spannungsquelle liefert UO. Wie gross ist der magnetische Fluss im stationären Zustand?
Solution:
Geg N N rho r quad textKupfer d_ deO de ell lO l d_ dzO dz U U % GesMagnetischer FlussvarPhi siWb % Die Fläche der Spule beträgt SolQtyAzfracpi d_^pi*dzX**/m^ al A_ pi r_^ pi qtyfracd^ AzF fracpi qtydz^ Az. Ihre Induktivität ist folglich SolQtyLfracmu_pi d_^ N^ellncmuoX*AzX/lX*NX**H al L mu_ fracA_ell N^ mu_ fracAzFell N^ LF ncmuo fracAzl N^ L. Die Drahtlänge ist das Produkt aus Anzahl Windungen und Umfang SolQtylprpi N d_pi*NX*dzXm al ell' lprF pi N dz lpr. Seine Querschnittsfläche lässt sich aus dem Durchmesser berechnen SolQtyAefracpi d_^pi*deX**/m^ al A_ pi r_^ pi qtyfracd_^ AeF fracpi qtyde^ Ae. Der Widerstand des Drahtes beträgt SolQtyRfracrho Nd_d_^rX*lprX/AeXohm al R fracrhoell'A_ fracrho lprFAeF RF fracr lprAe R. Legt man UO Spannung an dann fliessen im Draht im stationären Zustand SolQtyIfracUd_^rho Nd_UX/RXA al I fracUR fracURF IF fracUR I. Der magnetische Fluss durch diese Spule ist dann SolQtyPfracmu_pi d_^d_ N Urho ellLX*IXWb al varPhi LI LF IF PF L I P varPhi PF &approx PS
Contained in these collections:
-
Induktivität by pw
Asked Quantity:
Magnetischer Fluss \(\varPhi\)
in
Weber \(\rm Wb\)
Physical Quantity
Unit