Massenspektrometer für Chlor-Isotope
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / elektrische Ladung \(q, Q\) / Magnetische Flussdichte \(B\) / Kraft \(F\) / Geschwindigkeit \(v\) / Radius \(r\) /
The following formulas must be used to solve the exercise:
\(F = qvB \quad \) \(F = m\dfrac{v^2}{r} \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Es gibt zwei stabile Chlor-Isotope isotopeCl und isotopeCl deren natürliche Häufigkeit % bzw % ist. Eine natürliche Mischung einfach ionisierter Chlor-Moleküle in der Gasphase soll mit Hilfe eines Massenspektrometers in die Isotopenanteile getrennt werden. Das Spektrometer arbeitet mit einem BO starken Magnetfeld. Welche Beschleunigungsspannung muss mindestens anliegen damit die räumliche Trennung der Isotope ddO beträgt?
Solution:
Geg isotopeCl rightarrow m_ maO ma isotopeCl rightarrow m_ mbO mb B BO Delta d ddO dd GesBeschleunigungsspannungUsiV Die Isotope haben nach der Beschleunigung wegen sscEkin sscEpot frac mv^ qU jeweils v sqrtfracqUm v_ sqrtfracqUm_ v_ sqrtfracqUm_ Geschwindigkeit. Der Radius der Kreisbahnen die sie damit in einem Magnetfeld beschreiben beträgt wegen sscFZ sscFL qvB mfracv^r für die Isotope r fracmvqB fracBsqrtfracmUq r_ fracBsqrtfracm_Uq r_ fracBsqrtfracm_Uq Die geforderte räumliche Trennung entspricht der Bedingung Delta d Delta r r_-r_ leftfracBsqrtfracm_Uq-fracBsqrtfracm_Uqright fracBsqrtfracUq leftsqrtm_-sqrtm_right was aufgelöst nach der Beschleunigungsspannung U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ fracnce leftfracdd B leftsqrtma-sqrtmbrightright^ U approx US UP U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ US UP center tikzpicturescale. stealth draw arc:-:--; % Lochble vor Magnetfeld filldrawcolorblack fillblack rectangle -. .; filldrawcolorblack fillblack rectangle -. .; % Strahlen im Magnetfeld drawcolorred arc:-:; drawcolorred arc:-:.; % Strahl drawcolorred---; draw plot only marks mark optionsdrawred fillred mark* mark size. domain-.:-. samples x . + .*rnd; % Magnetfeld foreach a in --- nodecolorblue at .*cosa .*sina bigotimes; nodecolorblue at . tiny vec B; % Ionisationskammer draw -..---.---.---.---.---.---.---.---.; draw -..---.---.---.---.---.---.---.; drawsnakecoilsegment length.pt -..---..; draw plot only marks mark optionsdrawblack fillyellow mark* mark size domain-.:-. samples x . + .*rnd; % Detektor foreach y in ... filldrawcolorblack fillblack!!white -.+.*y rectangle -.-.+.*y-.; node at -.- tiny schwer; node at -.- tiny leicht; nodecolorred at -. ominus; tikzpicture center
Es gibt zwei stabile Chlor-Isotope isotopeCl und isotopeCl deren natürliche Häufigkeit % bzw % ist. Eine natürliche Mischung einfach ionisierter Chlor-Moleküle in der Gasphase soll mit Hilfe eines Massenspektrometers in die Isotopenanteile getrennt werden. Das Spektrometer arbeitet mit einem BO starken Magnetfeld. Welche Beschleunigungsspannung muss mindestens anliegen damit die räumliche Trennung der Isotope ddO beträgt?
Solution:
Geg isotopeCl rightarrow m_ maO ma isotopeCl rightarrow m_ mbO mb B BO Delta d ddO dd GesBeschleunigungsspannungUsiV Die Isotope haben nach der Beschleunigung wegen sscEkin sscEpot frac mv^ qU jeweils v sqrtfracqUm v_ sqrtfracqUm_ v_ sqrtfracqUm_ Geschwindigkeit. Der Radius der Kreisbahnen die sie damit in einem Magnetfeld beschreiben beträgt wegen sscFZ sscFL qvB mfracv^r für die Isotope r fracmvqB fracBsqrtfracmUq r_ fracBsqrtfracm_Uq r_ fracBsqrtfracm_Uq Die geforderte räumliche Trennung entspricht der Bedingung Delta d Delta r r_-r_ leftfracBsqrtfracm_Uq-fracBsqrtfracm_Uqright fracBsqrtfracUq leftsqrtm_-sqrtm_right was aufgelöst nach der Beschleunigungsspannung U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ fracnce leftfracdd B leftsqrtma-sqrtmbrightright^ U approx US UP U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ US UP center tikzpicturescale. stealth draw arc:-:--; % Lochble vor Magnetfeld filldrawcolorblack fillblack rectangle -. .; filldrawcolorblack fillblack rectangle -. .; % Strahlen im Magnetfeld drawcolorred arc:-:; drawcolorred arc:-:.; % Strahl drawcolorred---; draw plot only marks mark optionsdrawred fillred mark* mark size. domain-.:-. samples x . + .*rnd; % Magnetfeld foreach a in --- nodecolorblue at .*cosa .*sina bigotimes; nodecolorblue at . tiny vec B; % Ionisationskammer draw -..---.---.---.---.---.---.---.---.; draw -..---.---.---.---.---.---.---.; drawsnakecoilsegment length.pt -..---..; draw plot only marks mark optionsdrawblack fillyellow mark* mark size domain-.:-. samples x . + .*rnd; % Detektor foreach y in ... filldrawcolorblack fillblack!!white -.+.*y rectangle -.-.+.*y-.; node at -.- tiny schwer; node at -.- tiny leicht; nodecolorred at -. ominus; tikzpicture center
Meta Information
Exercise:
Es gibt zwei stabile Chlor-Isotope isotopeCl und isotopeCl deren natürliche Häufigkeit % bzw % ist. Eine natürliche Mischung einfach ionisierter Chlor-Moleküle in der Gasphase soll mit Hilfe eines Massenspektrometers in die Isotopenanteile getrennt werden. Das Spektrometer arbeitet mit einem BO starken Magnetfeld. Welche Beschleunigungsspannung muss mindestens anliegen damit die räumliche Trennung der Isotope ddO beträgt?
Solution:
Geg isotopeCl rightarrow m_ maO ma isotopeCl rightarrow m_ mbO mb B BO Delta d ddO dd GesBeschleunigungsspannungUsiV Die Isotope haben nach der Beschleunigung wegen sscEkin sscEpot frac mv^ qU jeweils v sqrtfracqUm v_ sqrtfracqUm_ v_ sqrtfracqUm_ Geschwindigkeit. Der Radius der Kreisbahnen die sie damit in einem Magnetfeld beschreiben beträgt wegen sscFZ sscFL qvB mfracv^r für die Isotope r fracmvqB fracBsqrtfracmUq r_ fracBsqrtfracm_Uq r_ fracBsqrtfracm_Uq Die geforderte räumliche Trennung entspricht der Bedingung Delta d Delta r r_-r_ leftfracBsqrtfracm_Uq-fracBsqrtfracm_Uqright fracBsqrtfracUq leftsqrtm_-sqrtm_right was aufgelöst nach der Beschleunigungsspannung U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ fracnce leftfracdd B leftsqrtma-sqrtmbrightright^ U approx US UP U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ US UP center tikzpicturescale. stealth draw arc:-:--; % Lochble vor Magnetfeld filldrawcolorblack fillblack rectangle -. .; filldrawcolorblack fillblack rectangle -. .; % Strahlen im Magnetfeld drawcolorred arc:-:; drawcolorred arc:-:.; % Strahl drawcolorred---; draw plot only marks mark optionsdrawred fillred mark* mark size. domain-.:-. samples x . + .*rnd; % Magnetfeld foreach a in --- nodecolorblue at .*cosa .*sina bigotimes; nodecolorblue at . tiny vec B; % Ionisationskammer draw -..---.---.---.---.---.---.---.---.; draw -..---.---.---.---.---.---.---.; drawsnakecoilsegment length.pt -..---..; draw plot only marks mark optionsdrawblack fillyellow mark* mark size domain-.:-. samples x . + .*rnd; % Detektor foreach y in ... filldrawcolorblack fillblack!!white -.+.*y rectangle -.-.+.*y-.; node at -.- tiny schwer; node at -.- tiny leicht; nodecolorred at -. ominus; tikzpicture center
Es gibt zwei stabile Chlor-Isotope isotopeCl und isotopeCl deren natürliche Häufigkeit % bzw % ist. Eine natürliche Mischung einfach ionisierter Chlor-Moleküle in der Gasphase soll mit Hilfe eines Massenspektrometers in die Isotopenanteile getrennt werden. Das Spektrometer arbeitet mit einem BO starken Magnetfeld. Welche Beschleunigungsspannung muss mindestens anliegen damit die räumliche Trennung der Isotope ddO beträgt?
Solution:
Geg isotopeCl rightarrow m_ maO ma isotopeCl rightarrow m_ mbO mb B BO Delta d ddO dd GesBeschleunigungsspannungUsiV Die Isotope haben nach der Beschleunigung wegen sscEkin sscEpot frac mv^ qU jeweils v sqrtfracqUm v_ sqrtfracqUm_ v_ sqrtfracqUm_ Geschwindigkeit. Der Radius der Kreisbahnen die sie damit in einem Magnetfeld beschreiben beträgt wegen sscFZ sscFL qvB mfracv^r für die Isotope r fracmvqB fracBsqrtfracmUq r_ fracBsqrtfracm_Uq r_ fracBsqrtfracm_Uq Die geforderte räumliche Trennung entspricht der Bedingung Delta d Delta r r_-r_ leftfracBsqrtfracm_Uq-fracBsqrtfracm_Uqright fracBsqrtfracUq leftsqrtm_-sqrtm_right was aufgelöst nach der Beschleunigungsspannung U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ fracnce leftfracdd B leftsqrtma-sqrtmbrightright^ U approx US UP U fracq leftfracDelta d B leftsqrtm_-sqrtm_rightright^ US UP center tikzpicturescale. stealth draw arc:-:--; % Lochble vor Magnetfeld filldrawcolorblack fillblack rectangle -. .; filldrawcolorblack fillblack rectangle -. .; % Strahlen im Magnetfeld drawcolorred arc:-:; drawcolorred arc:-:.; % Strahl drawcolorred---; draw plot only marks mark optionsdrawred fillred mark* mark size. domain-.:-. samples x . + .*rnd; % Magnetfeld foreach a in --- nodecolorblue at .*cosa .*sina bigotimes; nodecolorblue at . tiny vec B; % Ionisationskammer draw -..---.---.---.---.---.---.---.---.; draw -..---.---.---.---.---.---.---.; drawsnakecoilsegment length.pt -..---..; draw plot only marks mark optionsdrawblack fillyellow mark* mark size domain-.:-. samples x . + .*rnd; % Detektor foreach y in ... filldrawcolorblack fillblack!!white -.+.*y rectangle -.-.+.*y-.; node at -.- tiny schwer; node at -.- tiny leicht; nodecolorred at -. ominus; tikzpicture center
Contained in these collections:
-
-
Anwendungen Lorentzkraft by aej
-
Massenspektrometer by TeXercises
Asked Quantity:
elektrische Spannung \(U\)
in
Volt \(\rm V\)
Physical Quantity
Unit

