Mixed proofs
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Take f:mathbbCrightarrow mathbbC holomorphic and injective with f. abcliste abc Let r . Show that there exists a epsilon such that |fz| geq epsilon for all zin mathbbC with |z|geq r. abc Show that the isolated singularity in z of the function g:mathbbCbackslash rightarrow mathbbC gz fleftfraczright is a pole. abc Show that fz is a polynom and that fzcz for a cin mathbbCbackslash . abcliste
Solution:
abcliste abc Let r . Since f is holomorphic the open mapping theorem implies that fB_r is open. f implies that there exists an epsilon such that B_epsilon subset fB_r. Since f is injective for all z such that |z|geq r it holds that |fz|geq epsilon. abc Suppose that z is an essential singularity of g. Casaroti-Weierstrass implies that there exists a sequence of distinct pos z_krightarrow such that ffracz_krightarrow . We take k_ such that for all kgeq k_ it holds that |z_k| R r. Then |fz_k|geq epsilon which gives us a contradiction. If z were a removable singularity then we would have lim_zrightarrow fleftfraczright c This implies that for all |z| big enough we would have fz bounded. Liouville implies that f would be constant. So z is a pole. abc There exists a k positive eger such that gzfleftfraczrightz^k is holomorphic. Thus g is bounded around zero and we can conclude that |fz| leq c|z|^k. Cauchy's inequalities imply that f is a polynomial. Since it is injective and f we must have fzcz for cin mathbbCbackslash . abcliste
Take f:mathbbCrightarrow mathbbC holomorphic and injective with f. abcliste abc Let r . Show that there exists a epsilon such that |fz| geq epsilon for all zin mathbbC with |z|geq r. abc Show that the isolated singularity in z of the function g:mathbbCbackslash rightarrow mathbbC gz fleftfraczright is a pole. abc Show that fz is a polynom and that fzcz for a cin mathbbCbackslash . abcliste
Solution:
abcliste abc Let r . Since f is holomorphic the open mapping theorem implies that fB_r is open. f implies that there exists an epsilon such that B_epsilon subset fB_r. Since f is injective for all z such that |z|geq r it holds that |fz|geq epsilon. abc Suppose that z is an essential singularity of g. Casaroti-Weierstrass implies that there exists a sequence of distinct pos z_krightarrow such that ffracz_krightarrow . We take k_ such that for all kgeq k_ it holds that |z_k| R r. Then |fz_k|geq epsilon which gives us a contradiction. If z were a removable singularity then we would have lim_zrightarrow fleftfraczright c This implies that for all |z| big enough we would have fz bounded. Liouville implies that f would be constant. So z is a pole. abc There exists a k positive eger such that gzfleftfraczrightz^k is holomorphic. Thus g is bounded around zero and we can conclude that |fz| leq c|z|^k. Cauchy's inequalities imply that f is a polynomial. Since it is injective and f we must have fzcz for cin mathbbCbackslash . abcliste
Meta Information
Exercise:
Take f:mathbbCrightarrow mathbbC holomorphic and injective with f. abcliste abc Let r . Show that there exists a epsilon such that |fz| geq epsilon for all zin mathbbC with |z|geq r. abc Show that the isolated singularity in z of the function g:mathbbCbackslash rightarrow mathbbC gz fleftfraczright is a pole. abc Show that fz is a polynom and that fzcz for a cin mathbbCbackslash . abcliste
Solution:
abcliste abc Let r . Since f is holomorphic the open mapping theorem implies that fB_r is open. f implies that there exists an epsilon such that B_epsilon subset fB_r. Since f is injective for all z such that |z|geq r it holds that |fz|geq epsilon. abc Suppose that z is an essential singularity of g. Casaroti-Weierstrass implies that there exists a sequence of distinct pos z_krightarrow such that ffracz_krightarrow . We take k_ such that for all kgeq k_ it holds that |z_k| R r. Then |fz_k|geq epsilon which gives us a contradiction. If z were a removable singularity then we would have lim_zrightarrow fleftfraczright c This implies that for all |z| big enough we would have fz bounded. Liouville implies that f would be constant. So z is a pole. abc There exists a k positive eger such that gzfleftfraczrightz^k is holomorphic. Thus g is bounded around zero and we can conclude that |fz| leq c|z|^k. Cauchy's inequalities imply that f is a polynomial. Since it is injective and f we must have fzcz for cin mathbbCbackslash . abcliste
Take f:mathbbCrightarrow mathbbC holomorphic and injective with f. abcliste abc Let r . Show that there exists a epsilon such that |fz| geq epsilon for all zin mathbbC with |z|geq r. abc Show that the isolated singularity in z of the function g:mathbbCbackslash rightarrow mathbbC gz fleftfraczright is a pole. abc Show that fz is a polynom and that fzcz for a cin mathbbCbackslash . abcliste
Solution:
abcliste abc Let r . Since f is holomorphic the open mapping theorem implies that fB_r is open. f implies that there exists an epsilon such that B_epsilon subset fB_r. Since f is injective for all z such that |z|geq r it holds that |fz|geq epsilon. abc Suppose that z is an essential singularity of g. Casaroti-Weierstrass implies that there exists a sequence of distinct pos z_krightarrow such that ffracz_krightarrow . We take k_ such that for all kgeq k_ it holds that |z_k| R r. Then |fz_k|geq epsilon which gives us a contradiction. If z were a removable singularity then we would have lim_zrightarrow fleftfraczright c This implies that for all |z| big enough we would have fz bounded. Liouville implies that f would be constant. So z is a pole. abc There exists a k positive eger such that gzfleftfraczrightz^k is holomorphic. Thus g is bounded around zero and we can conclude that |fz| leq c|z|^k. Cauchy's inequalities imply that f is a polynomial. Since it is injective and f we must have fzcz for cin mathbbCbackslash . abcliste
Contained in these collections: