Notwendige Bedingungen für Extrema mit Nebenbedingungen
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Sei Usubseteq mathbbR^n offen und Msubseteq U eine Teilmannigfaltigkeit von mathbbR^n. Weiter sei f:Urightarrow mathbbR eine differenzierbare Funktion. Angenommen f|_M nimmt in pin M ein lokales Extremum an. Dann ist nabla fp ein Normalenvektor an M bei p das heisst es gilt langle nabla fp vrangle für alle pvin textT_pM. Die Menge der Normalenvektoren an M bei p werden mit textT_pM^perppw|langle wvrangle forall pvin textT_pM bezeichnet. Genauso wie textT_pM bildet textT_pM^perp einen Unterraum von textT_pmathbbR^n . Wenn M eine k-dimensionale Teilmannigfaltigkeit ist dann hat textT_pM^perp die Dimension n-k.
Solution:
Beweis. Man betrachtet einen differenzierbaren Weg gamma :-epsilon epsilonrightarrow M mit gammap und epsilon . Da f in p ein lokales Extremum annimmmt nimmt fcirc gamma:-epsilon epsilonrightarrow mathbbR in ein lokales Extremum an. Daher gilt nach Proposition . und der Kettenregel fcirc gamma'langle nabla fpgamma'rangle. Da epsilon beliebig und gamma:-epsilon epsilonrightarrow M ein beliebiger Weg mit gammap war folgt daraus mit der Definition des Tangentialraums textT_pM die Proposition.
Sei Usubseteq mathbbR^n offen und Msubseteq U eine Teilmannigfaltigkeit von mathbbR^n. Weiter sei f:Urightarrow mathbbR eine differenzierbare Funktion. Angenommen f|_M nimmt in pin M ein lokales Extremum an. Dann ist nabla fp ein Normalenvektor an M bei p das heisst es gilt langle nabla fp vrangle für alle pvin textT_pM. Die Menge der Normalenvektoren an M bei p werden mit textT_pM^perppw|langle wvrangle forall pvin textT_pM bezeichnet. Genauso wie textT_pM bildet textT_pM^perp einen Unterraum von textT_pmathbbR^n . Wenn M eine k-dimensionale Teilmannigfaltigkeit ist dann hat textT_pM^perp die Dimension n-k.
Solution:
Beweis. Man betrachtet einen differenzierbaren Weg gamma :-epsilon epsilonrightarrow M mit gammap und epsilon . Da f in p ein lokales Extremum annimmmt nimmt fcirc gamma:-epsilon epsilonrightarrow mathbbR in ein lokales Extremum an. Daher gilt nach Proposition . und der Kettenregel fcirc gamma'langle nabla fpgamma'rangle. Da epsilon beliebig und gamma:-epsilon epsilonrightarrow M ein beliebiger Weg mit gammap war folgt daraus mit der Definition des Tangentialraums textT_pM die Proposition.
Meta Information
Exercise:
Sei Usubseteq mathbbR^n offen und Msubseteq U eine Teilmannigfaltigkeit von mathbbR^n. Weiter sei f:Urightarrow mathbbR eine differenzierbare Funktion. Angenommen f|_M nimmt in pin M ein lokales Extremum an. Dann ist nabla fp ein Normalenvektor an M bei p das heisst es gilt langle nabla fp vrangle für alle pvin textT_pM. Die Menge der Normalenvektoren an M bei p werden mit textT_pM^perppw|langle wvrangle forall pvin textT_pM bezeichnet. Genauso wie textT_pM bildet textT_pM^perp einen Unterraum von textT_pmathbbR^n . Wenn M eine k-dimensionale Teilmannigfaltigkeit ist dann hat textT_pM^perp die Dimension n-k.
Solution:
Beweis. Man betrachtet einen differenzierbaren Weg gamma :-epsilon epsilonrightarrow M mit gammap und epsilon . Da f in p ein lokales Extremum annimmmt nimmt fcirc gamma:-epsilon epsilonrightarrow mathbbR in ein lokales Extremum an. Daher gilt nach Proposition . und der Kettenregel fcirc gamma'langle nabla fpgamma'rangle. Da epsilon beliebig und gamma:-epsilon epsilonrightarrow M ein beliebiger Weg mit gammap war folgt daraus mit der Definition des Tangentialraums textT_pM die Proposition.
Sei Usubseteq mathbbR^n offen und Msubseteq U eine Teilmannigfaltigkeit von mathbbR^n. Weiter sei f:Urightarrow mathbbR eine differenzierbare Funktion. Angenommen f|_M nimmt in pin M ein lokales Extremum an. Dann ist nabla fp ein Normalenvektor an M bei p das heisst es gilt langle nabla fp vrangle für alle pvin textT_pM. Die Menge der Normalenvektoren an M bei p werden mit textT_pM^perppw|langle wvrangle forall pvin textT_pM bezeichnet. Genauso wie textT_pM bildet textT_pM^perp einen Unterraum von textT_pmathbbR^n . Wenn M eine k-dimensionale Teilmannigfaltigkeit ist dann hat textT_pM^perp die Dimension n-k.
Solution:
Beweis. Man betrachtet einen differenzierbaren Weg gamma :-epsilon epsilonrightarrow M mit gammap und epsilon . Da f in p ein lokales Extremum annimmmt nimmt fcirc gamma:-epsilon epsilonrightarrow mathbbR in ein lokales Extremum an. Daher gilt nach Proposition . und der Kettenregel fcirc gamma'langle nabla fpgamma'rangle. Da epsilon beliebig und gamma:-epsilon epsilonrightarrow M ein beliebiger Weg mit gammap war folgt daraus mit der Definition des Tangentialraums textT_pM die Proposition.
Contained in these collections: