Pallas
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Der Asteroid textsl Pallas wurde von der sogenannten textslHimmelspolizey auf der Suche nach einem Planeten zwischen Mars und Jupiter entdeckt. Pallas bewegt sich in einer elliptischen Umlaufbahn um die Sonne. Der kleinste Abstand zur Sonne beträgt dabei AE der grösste AE. Berechnen Sie die Bahngeschwindigkeiten von Pallas im Perihel und im Aphel.
Solution:
section*Gegebene Werte * a . textAE r_p . textAE r_a . textAE M . times ^ textkg G . times ^- textm^ textkg^- texts^- textAE . times ^ textm * section*Lösung subsection*. Geschwindigkeit im Perihel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernungen in Meter: * r_p . times . times ^ textm r_p . times ^ textm a . times . times ^ textm a . times ^ textm * Berechnung der Geschwindigkeit im Perihel: * v_p sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_p sqrt. times ^ left frac. times ^ - frac. times ^ right v_p sqrt. times ^ left . times ^- - . times ^- right v_p sqrt. times ^ times . times ^- v_p sqrt. times ^ v_p . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Perihel beträgt v_p . times ^ textm/s. subsection*. Geschwindigkeit im Aphel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernung in Meter: * r_a . times . times ^ textm r_a . times ^ textm * Berechnung der Geschwindigkeit im Aphel: * v_a sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_a sqrt. times ^ left frac. times ^ - frac. times ^ right v_a sqrt. times ^ left . times ^- - . times ^- right v_a sqrt. times ^ times . times ^- v_a sqrt. times ^ v_a . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Aphel beträgt v_a . times ^ textm/s.
Der Asteroid textsl Pallas wurde von der sogenannten textslHimmelspolizey auf der Suche nach einem Planeten zwischen Mars und Jupiter entdeckt. Pallas bewegt sich in einer elliptischen Umlaufbahn um die Sonne. Der kleinste Abstand zur Sonne beträgt dabei AE der grösste AE. Berechnen Sie die Bahngeschwindigkeiten von Pallas im Perihel und im Aphel.
Solution:
section*Gegebene Werte * a . textAE r_p . textAE r_a . textAE M . times ^ textkg G . times ^- textm^ textkg^- texts^- textAE . times ^ textm * section*Lösung subsection*. Geschwindigkeit im Perihel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernungen in Meter: * r_p . times . times ^ textm r_p . times ^ textm a . times . times ^ textm a . times ^ textm * Berechnung der Geschwindigkeit im Perihel: * v_p sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_p sqrt. times ^ left frac. times ^ - frac. times ^ right v_p sqrt. times ^ left . times ^- - . times ^- right v_p sqrt. times ^ times . times ^- v_p sqrt. times ^ v_p . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Perihel beträgt v_p . times ^ textm/s. subsection*. Geschwindigkeit im Aphel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernung in Meter: * r_a . times . times ^ textm r_a . times ^ textm * Berechnung der Geschwindigkeit im Aphel: * v_a sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_a sqrt. times ^ left frac. times ^ - frac. times ^ right v_a sqrt. times ^ left . times ^- - . times ^- right v_a sqrt. times ^ times . times ^- v_a sqrt. times ^ v_a . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Aphel beträgt v_a . times ^ textm/s.
Meta Information
Exercise:
Der Asteroid textsl Pallas wurde von der sogenannten textslHimmelspolizey auf der Suche nach einem Planeten zwischen Mars und Jupiter entdeckt. Pallas bewegt sich in einer elliptischen Umlaufbahn um die Sonne. Der kleinste Abstand zur Sonne beträgt dabei AE der grösste AE. Berechnen Sie die Bahngeschwindigkeiten von Pallas im Perihel und im Aphel.
Solution:
section*Gegebene Werte * a . textAE r_p . textAE r_a . textAE M . times ^ textkg G . times ^- textm^ textkg^- texts^- textAE . times ^ textm * section*Lösung subsection*. Geschwindigkeit im Perihel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernungen in Meter: * r_p . times . times ^ textm r_p . times ^ textm a . times . times ^ textm a . times ^ textm * Berechnung der Geschwindigkeit im Perihel: * v_p sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_p sqrt. times ^ left frac. times ^ - frac. times ^ right v_p sqrt. times ^ left . times ^- - . times ^- right v_p sqrt. times ^ times . times ^- v_p sqrt. times ^ v_p . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Perihel beträgt v_p . times ^ textm/s. subsection*. Geschwindigkeit im Aphel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernung in Meter: * r_a . times . times ^ textm r_a . times ^ textm * Berechnung der Geschwindigkeit im Aphel: * v_a sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_a sqrt. times ^ left frac. times ^ - frac. times ^ right v_a sqrt. times ^ left . times ^- - . times ^- right v_a sqrt. times ^ times . times ^- v_a sqrt. times ^ v_a . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Aphel beträgt v_a . times ^ textm/s.
Der Asteroid textsl Pallas wurde von der sogenannten textslHimmelspolizey auf der Suche nach einem Planeten zwischen Mars und Jupiter entdeckt. Pallas bewegt sich in einer elliptischen Umlaufbahn um die Sonne. Der kleinste Abstand zur Sonne beträgt dabei AE der grösste AE. Berechnen Sie die Bahngeschwindigkeiten von Pallas im Perihel und im Aphel.
Solution:
section*Gegebene Werte * a . textAE r_p . textAE r_a . textAE M . times ^ textkg G . times ^- textm^ textkg^- texts^- textAE . times ^ textm * section*Lösung subsection*. Geschwindigkeit im Perihel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernungen in Meter: * r_p . times . times ^ textm r_p . times ^ textm a . times . times ^ textm a . times ^ textm * Berechnung der Geschwindigkeit im Perihel: * v_p sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_p sqrt. times ^ left frac. times ^ - frac. times ^ right v_p sqrt. times ^ left . times ^- - . times ^- right v_p sqrt. times ^ times . times ^- v_p sqrt. times ^ v_p . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Perihel beträgt v_p . times ^ textm/s. subsection*. Geschwindigkeit im Aphel Verwen der Vis-Viva-Gleichung: v sqrtGM left fracr - fraca right Umrechnung der Entfernung in Meter: * r_a . times . times ^ textm r_a . times ^ textm * Berechnung der Geschwindigkeit im Aphel: * v_a sqrt. times ^- textm^ textkg^- texts^- times . times ^ textkg left frac. times ^ textm - frac. times ^ textm right v_a sqrt. times ^ left frac. times ^ - frac. times ^ right v_a sqrt. times ^ left . times ^- - . times ^- right v_a sqrt. times ^ times . times ^- v_a sqrt. times ^ v_a . times ^ textm/s * Die Geschwindigkeit des Asteroiden Pallas im Aphel beträgt v_a . times ^ textm/s.
Contained in these collections:
Asked Quantity:
Geschwindigkeit \(v\)
in
Meter pro Sekunde \(\rm \frac{m}{s}\)
Physical Quantity
Geschwindigkeit \(v\)
Strecke pro Zeit
Veränderung des Ortes
Unit
Meter pro Sekunde (\(\rm \frac{m}{s}\))
Base?
SI?
Metric?
Coherent?
Imperial?

