Parallelschaltung
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
elektrischer Widerstand \(R\) /
The following formulas must be used to solve the exercise:
\(\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \quad \) \(R = R_1 + R_2 \quad \)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
Ein Widerstand von siOmega ist mit einem zweiten parallel geschaltet. Welchen Widerstandswert hat dieser wenn der Ersatzwiderstand folge Werte annimmt: a siOmegaqquad b siOmegaqquad c siOmega
Solution:
* &fracR_resfracR_+fracR_ Rightarrow R_ fracR_R_resR_-R_res &texta R_fracsiOmega siOmegasiOmega- siOmega uulinesiOmega &textb R_fracsiOmega siOmegasiOmega- siOmega rightarrow uulineinfty &textc R_fracsiOmega siOmegasiOmega- siOmega uulinsiOmega * Wenn man wie bei b keinen Widerstand parallel zu R_ schaltet so ist R_resR_. Kein Widerstand ist äquivalent zu R_infty. Ein negativer Widerstandswert wie bei c ist kein Verbraucher sondern eine Quelle. Verstärkerelemente können formal als negative Widerstände betrachtet werden.
Ein Widerstand von siOmega ist mit einem zweiten parallel geschaltet. Welchen Widerstandswert hat dieser wenn der Ersatzwiderstand folge Werte annimmt: a siOmegaqquad b siOmegaqquad c siOmega
Solution:
* &fracR_resfracR_+fracR_ Rightarrow R_ fracR_R_resR_-R_res &texta R_fracsiOmega siOmegasiOmega- siOmega uulinesiOmega &textb R_fracsiOmega siOmegasiOmega- siOmega rightarrow uulineinfty &textc R_fracsiOmega siOmegasiOmega- siOmega uulinsiOmega * Wenn man wie bei b keinen Widerstand parallel zu R_ schaltet so ist R_resR_. Kein Widerstand ist äquivalent zu R_infty. Ein negativer Widerstandswert wie bei c ist kein Verbraucher sondern eine Quelle. Verstärkerelemente können formal als negative Widerstände betrachtet werden.
Meta Information
Exercise:
Ein Widerstand von siOmega ist mit einem zweiten parallel geschaltet. Welchen Widerstandswert hat dieser wenn der Ersatzwiderstand folge Werte annimmt: a siOmegaqquad b siOmegaqquad c siOmega
Solution:
* &fracR_resfracR_+fracR_ Rightarrow R_ fracR_R_resR_-R_res &texta R_fracsiOmega siOmegasiOmega- siOmega uulinesiOmega &textb R_fracsiOmega siOmegasiOmega- siOmega rightarrow uulineinfty &textc R_fracsiOmega siOmegasiOmega- siOmega uulinsiOmega * Wenn man wie bei b keinen Widerstand parallel zu R_ schaltet so ist R_resR_. Kein Widerstand ist äquivalent zu R_infty. Ein negativer Widerstandswert wie bei c ist kein Verbraucher sondern eine Quelle. Verstärkerelemente können formal als negative Widerstände betrachtet werden.
Ein Widerstand von siOmega ist mit einem zweiten parallel geschaltet. Welchen Widerstandswert hat dieser wenn der Ersatzwiderstand folge Werte annimmt: a siOmegaqquad b siOmegaqquad c siOmega
Solution:
* &fracR_resfracR_+fracR_ Rightarrow R_ fracR_R_resR_-R_res &texta R_fracsiOmega siOmegasiOmega- siOmega uulinesiOmega &textb R_fracsiOmega siOmegasiOmega- siOmega rightarrow uulineinfty &textc R_fracsiOmega siOmegasiOmega- siOmega uulinsiOmega * Wenn man wie bei b keinen Widerstand parallel zu R_ schaltet so ist R_resR_. Kein Widerstand ist äquivalent zu R_infty. Ein negativer Widerstandswert wie bei c ist kein Verbraucher sondern eine Quelle. Verstärkerelemente können formal als negative Widerstände betrachtet werden.
Contained in these collections:
-
Widerstand Schaltung by TeXercises
-