Pump up a tire
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
A tire to be treated as a hollow cylinder with a height of hO an outside diameter of RO and an inside diameter of rO mm should be inflated with air to pO. How much volume air from the environment must be supplied? One inch is .cm one pound is .g and a psi is a enquotepound per inch squared.
Solution:
NewQtypzbarePa Geg h hO h R RO R r rO r p_ pO p textenvironment rightarrow p_ pzO pz GesVolumeV_sicubicmeter SolQtyVpi*RX^-rX^*hXcubicmeter V_ pi R^-r^ h pi qtyR^-qtyr^ h V SolQtyVzpX*VX/pzXcubicmeter V_ fracp_V_p_ fracp_ pi R^-r^ hp_ fracp Vpz Vz approx VzS VzP V_ fracpi h p_ R^-r^p_ VzS VzP
A tire to be treated as a hollow cylinder with a height of hO an outside diameter of RO and an inside diameter of rO mm should be inflated with air to pO. How much volume air from the environment must be supplied? One inch is .cm one pound is .g and a psi is a enquotepound per inch squared.
Solution:
NewQtypzbarePa Geg h hO h R RO R r rO r p_ pO p textenvironment rightarrow p_ pzO pz GesVolumeV_sicubicmeter SolQtyVpi*RX^-rX^*hXcubicmeter V_ pi R^-r^ h pi qtyR^-qtyr^ h V SolQtyVzpX*VX/pzXcubicmeter V_ fracp_V_p_ fracp_ pi R^-r^ hp_ fracp Vpz Vz approx VzS VzP V_ fracpi h p_ R^-r^p_ VzS VzP
Meta Information
Exercise:
A tire to be treated as a hollow cylinder with a height of hO an outside diameter of RO and an inside diameter of rO mm should be inflated with air to pO. How much volume air from the environment must be supplied? One inch is .cm one pound is .g and a psi is a enquotepound per inch squared.
Solution:
NewQtypzbarePa Geg h hO h R RO R r rO r p_ pO p textenvironment rightarrow p_ pzO pz GesVolumeV_sicubicmeter SolQtyVpi*RX^-rX^*hXcubicmeter V_ pi R^-r^ h pi qtyR^-qtyr^ h V SolQtyVzpX*VX/pzXcubicmeter V_ fracp_V_p_ fracp_ pi R^-r^ hp_ fracp Vpz Vz approx VzS VzP V_ fracpi h p_ R^-r^p_ VzS VzP
A tire to be treated as a hollow cylinder with a height of hO an outside diameter of RO and an inside diameter of rO mm should be inflated with air to pO. How much volume air from the environment must be supplied? One inch is .cm one pound is .g and a psi is a enquotepound per inch squared.
Solution:
NewQtypzbarePa Geg h hO h R RO R r rO r p_ pO p textenvironment rightarrow p_ pzO pz GesVolumeV_sicubicmeter SolQtyVpi*RX^-rX^*hXcubicmeter V_ pi R^-r^ h pi qtyR^-qtyr^ h V SolQtyVzpX*VX/pzXcubicmeter V_ fracp_V_p_ fracp_ pi R^-r^ hp_ fracp Vpz Vz approx VzS VzP V_ fracpi h p_ R^-r^p_ VzS VzP
Contained in these collections:
-
Boyle-Mariotte by uz
Asked Quantity:
Volumen \(V\)
in
Kubikmeter \(\rm m^3\)
Physical Quantity
Rauminhalt
Unit
Kubikmeter (\(\rm m^3\))
Base?
SI?
Metric?
Coherent?
Imperial?