Exercise
https://texercises.com/exercise/qr-decomposition/
Question
Solution
Short
Video
\(\LaTeX\)
No explanation / solution video to this exercise has yet been created.

Visit our YouTube-Channel to see solutions to other exercises.
Don't forget to subscribe to our channel, like the videos and leave comments!
Exercise:
abcliste abc Let Ain textGL_nmathbbR. Then exists Qin On and an upper triangular matrix Rin M_ntimes nmathbbR s.t. AQ R. abc Let Ain textGL_nmathbbR. Then exists Qin Un and an upper triangular matrix Rin M_ntimes nmathbbC s.t. AQ R. abcliste

Solution:
Proof. Write A pmatrix vdots & & vdots v_ & hdots & v_n vdots & & vdots pmatrix with v_kin K^n_textcol KmathbbR or mathbbC. Since Ain textGL_nK v_...v_n form a basis for K^n. Apply G-M orthogonalization to v_...v_n and obtain an orthonormal basis e_...e_n for K^n. Recall that forall leq jleq n textSpv_...v_jtextSpe_...e_j. And we also have: v_ langle v_e_rangle e_ v_ langle v_e_rangle e_+langle v_e_rangle e_ &vdots v_j langle v_je_rangle e_+...+langle v_je_jrangle e_j &vdots v_n langle v_ne_rangle e_+...+langle v_ne_nrangle e_n &Rightarrow pmatrix vdots & & vdots & & vdots v_ & hdots & v_j & hdots & v_n vdots & & vdots & & vdots pmatrix pmatrix vdots & & vdots & & vdots e_ & hdots & e_j & hdots & e_n vdots & & vdots & & vdots pmatrix pmatrix langle v_e_rangle & langle v_e_rangle & vdots & langle v_je_rangle & vdots & langle v_ne_rangle & langle v_e_rangle & vdots & langle v_je_rangle & vdots & langle v_ne_rangle vdots & & ddots & vdots & & vdots vdots & vdots & & langle v_je_jrangle & & vdots & & hdots & & & langle v_ne_nrangle pmatrix
Report An Error
You are on texercises.com.
reCaptcha will only work on our main-domain \(\TeX\)ercises.com!
Meta Information
\(\LaTeX\)-Code
Exercise:
abcliste abc Let Ain textGL_nmathbbR. Then exists Qin On and an upper triangular matrix Rin M_ntimes nmathbbR s.t. AQ R. abc Let Ain textGL_nmathbbR. Then exists Qin Un and an upper triangular matrix Rin M_ntimes nmathbbC s.t. AQ R. abcliste

Solution:
Proof. Write A pmatrix vdots & & vdots v_ & hdots & v_n vdots & & vdots pmatrix with v_kin K^n_textcol KmathbbR or mathbbC. Since Ain textGL_nK v_...v_n form a basis for K^n. Apply G-M orthogonalization to v_...v_n and obtain an orthonormal basis e_...e_n for K^n. Recall that forall leq jleq n textSpv_...v_jtextSpe_...e_j. And we also have: v_ langle v_e_rangle e_ v_ langle v_e_rangle e_+langle v_e_rangle e_ &vdots v_j langle v_je_rangle e_+...+langle v_je_jrangle e_j &vdots v_n langle v_ne_rangle e_+...+langle v_ne_nrangle e_n &Rightarrow pmatrix vdots & & vdots & & vdots v_ & hdots & v_j & hdots & v_n vdots & & vdots & & vdots pmatrix pmatrix vdots & & vdots & & vdots e_ & hdots & e_j & hdots & e_n vdots & & vdots & & vdots pmatrix pmatrix langle v_e_rangle & langle v_e_rangle & vdots & langle v_je_rangle & vdots & langle v_ne_rangle & langle v_e_rangle & vdots & langle v_je_rangle & vdots & langle v_ne_rangle vdots & & ddots & vdots & & vdots vdots & vdots & & langle v_je_jrangle & & vdots & & hdots & & & langle v_ne_nrangle pmatrix
Contained in these collections:

Attributes & Decorations
Tags
eth, fs23, lineare algebra, proof
Content image
Difficulty
(3, default)
Points
0 (default)
Language
ENG (English)
Type
Proof
Creator rk
Decoration