Quecksilber erstarrt
About points...
We associate a certain number of points with each exercise.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
When you click an exercise into a collection, this number will be taken as points for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit the number of points for the exercise in the collection independently, without any effect on "points by default" as represented by the number here.
That being said... How many "default points" should you associate with an exercise upon creation?
As with difficulty, there is no straight forward and generally accepted way.
But as a guideline, we tend to give as many points by default as there are mathematical steps to do in the exercise.
Again, very vague... But the number should kind of represent the "work" required.
About difficulty...
We associate a certain difficulty with each exercise.
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
When you click an exercise into a collection, this number will be taken as difficulty for the exercise, kind of "by default".
But once the exercise is on the collection, you can edit its difficulty in the collection independently, without any effect on the "difficulty by default" here.
Why we use chess pieces? Well... we like chess, we like playing around with \(\LaTeX\)-fonts, we wanted symbols that need less space than six stars in a table-column... But in your layouts, you are of course free to indicate the difficulty of the exercise the way you want.
That being said... How "difficult" is an exercise? It depends on many factors, like what was being taught etc.
In physics exercises, we try to follow this pattern:
Level 1 - One formula (one you would find in a reference book) is enough to solve the exercise. Example exercise
Level 2 - Two formulas are needed, it's possible to compute an "in-between" solution, i.e. no algebraic equation needed. Example exercise
Level 3 - "Chain-computations" like on level 2, but 3+ calculations. Still, no equations, i.e. you are not forced to solve it in an algebraic manner. Example exercise
Level 4 - Exercise needs to be solved by algebraic equations, not possible to calculate numerical "in-between" results. Example exercise
Level 5 -
Level 6 -
Question
Solution
Short
Video
\(\LaTeX\)
Need help? Yes, please!
The following quantities appear in the problem:
Masse \(m\) / Temperatur \(T\) / Volumen \(V\) / Wärme \(Q\) / spezifische latente Wärme \(L\) / Dichte \(\varrho\) / Wärmekapazität \(c\) /
The following formulas must be used to solve the exercise:
\(\varrho = \dfrac{m}{V} \quad \) \(Q = c \cdot m \cdot \Delta\vartheta \quad \) \(Q = m \cdot L_{\scriptscriptstyle\rm f} \quad \)
Exercise:
.cubiccentimeter Quecksilber Formelbuch.grampercubiccentimeter jouleperkilogramperkelvin .kilojouleperkilogram bei degreeCelsius werden bis zum Schmelzpunkt Formelbuchbei -degreeCelsius abgekühlt. Welche Wärmemenge gibt das Quecksilber bis zu seinem Erstarren ab?
Solution:
newqtyVo.cubiccentimeter newqtyVVon cubicmeter newqtyro.grampercubiccentimeter newqtyrron ekgpcm newqtyLo.kilojouleperkilogram WaermeQuecksilber newqtyTecelsius % Geg V Vo V textQuecksilber to rho Formelbuchro r to sscLf FormelbuchLo LfQu to c cQu theta_ Te textSchmelzpunkt to sscthetaf TfQu % GesWärmeQ siJ % Mit der Dichte von Quecksilber finden wir die Masse vom Volumen Vo Quecksilber: solqtymrho Vrn*Vnkg al m mf rV m Wenn diese Menge Quecksilber sich von Te auf den Schmelz- bzw. Erstarrungspunkt welcher für Quecksilber bei Tf liegt abkühlt so gibt sie dabei die folge Wärmemenge ab: solqtyQc rho V qtytheta_ - sscthetaf + rho V sscLfcQun*mn*Ten-TfQun+mn*LfQunJ al Q Q_ + sscQf c m Deltatheta + m sscLf Qf cQu m qtyTe - qtyTfQu + m LfQu Q Das sind rund .kJ. Q Qf QII TecQ
.cubiccentimeter Quecksilber Formelbuch.grampercubiccentimeter jouleperkilogramperkelvin .kilojouleperkilogram bei degreeCelsius werden bis zum Schmelzpunkt Formelbuchbei -degreeCelsius abgekühlt. Welche Wärmemenge gibt das Quecksilber bis zu seinem Erstarren ab?
Solution:
newqtyVo.cubiccentimeter newqtyVVon cubicmeter newqtyro.grampercubiccentimeter newqtyrron ekgpcm newqtyLo.kilojouleperkilogram WaermeQuecksilber newqtyTecelsius % Geg V Vo V textQuecksilber to rho Formelbuchro r to sscLf FormelbuchLo LfQu to c cQu theta_ Te textSchmelzpunkt to sscthetaf TfQu % GesWärmeQ siJ % Mit der Dichte von Quecksilber finden wir die Masse vom Volumen Vo Quecksilber: solqtymrho Vrn*Vnkg al m mf rV m Wenn diese Menge Quecksilber sich von Te auf den Schmelz- bzw. Erstarrungspunkt welcher für Quecksilber bei Tf liegt abkühlt so gibt sie dabei die folge Wärmemenge ab: solqtyQc rho V qtytheta_ - sscthetaf + rho V sscLfcQun*mn*Ten-TfQun+mn*LfQunJ al Q Q_ + sscQf c m Deltatheta + m sscLf Qf cQu m qtyTe - qtyTfQu + m LfQu Q Das sind rund .kJ. Q Qf QII TecQ
Meta Information
Exercise:
.cubiccentimeter Quecksilber Formelbuch.grampercubiccentimeter jouleperkilogramperkelvin .kilojouleperkilogram bei degreeCelsius werden bis zum Schmelzpunkt Formelbuchbei -degreeCelsius abgekühlt. Welche Wärmemenge gibt das Quecksilber bis zu seinem Erstarren ab?
Solution:
newqtyVo.cubiccentimeter newqtyVVon cubicmeter newqtyro.grampercubiccentimeter newqtyrron ekgpcm newqtyLo.kilojouleperkilogram WaermeQuecksilber newqtyTecelsius % Geg V Vo V textQuecksilber to rho Formelbuchro r to sscLf FormelbuchLo LfQu to c cQu theta_ Te textSchmelzpunkt to sscthetaf TfQu % GesWärmeQ siJ % Mit der Dichte von Quecksilber finden wir die Masse vom Volumen Vo Quecksilber: solqtymrho Vrn*Vnkg al m mf rV m Wenn diese Menge Quecksilber sich von Te auf den Schmelz- bzw. Erstarrungspunkt welcher für Quecksilber bei Tf liegt abkühlt so gibt sie dabei die folge Wärmemenge ab: solqtyQc rho V qtytheta_ - sscthetaf + rho V sscLfcQun*mn*Ten-TfQun+mn*LfQunJ al Q Q_ + sscQf c m Deltatheta + m sscLf Qf cQu m qtyTe - qtyTfQu + m LfQu Q Das sind rund .kJ. Q Qf QII TecQ
.cubiccentimeter Quecksilber Formelbuch.grampercubiccentimeter jouleperkilogramperkelvin .kilojouleperkilogram bei degreeCelsius werden bis zum Schmelzpunkt Formelbuchbei -degreeCelsius abgekühlt. Welche Wärmemenge gibt das Quecksilber bis zu seinem Erstarren ab?
Solution:
newqtyVo.cubiccentimeter newqtyVVon cubicmeter newqtyro.grampercubiccentimeter newqtyrron ekgpcm newqtyLo.kilojouleperkilogram WaermeQuecksilber newqtyTecelsius % Geg V Vo V textQuecksilber to rho Formelbuchro r to sscLf FormelbuchLo LfQu to c cQu theta_ Te textSchmelzpunkt to sscthetaf TfQu % GesWärmeQ siJ % Mit der Dichte von Quecksilber finden wir die Masse vom Volumen Vo Quecksilber: solqtymrho Vrn*Vnkg al m mf rV m Wenn diese Menge Quecksilber sich von Te auf den Schmelz- bzw. Erstarrungspunkt welcher für Quecksilber bei Tf liegt abkühlt so gibt sie dabei die folge Wärmemenge ab: solqtyQc rho V qtytheta_ - sscthetaf + rho V sscLfcQun*mn*Ten-TfQun+mn*LfQunJ al Q Q_ + sscQf c m Deltatheta + m sscLf Qf cQu m qtyTe - qtyTfQu + m LfQu Q Das sind rund .kJ. Q Qf QII TecQ
Contained in these collections:
-
Latente Wärme by pw
-
Schmelzen und Dichte by TeXercises
-
Latente Wärme 1 by uz
-
Latente Wärmen by aej